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We show that a network of ballistic electron waveguides can generate entangled Bell-like states from
separable states when it is resonant. The network we study is grouped into individual quditssd=4d made up of
pairs of waveguides. Rotation gates in the network produce coherent superpositions of qudit states. A Coulomb
gate entangles the qudits. We construct a unitary matrix which characterizes the network dynamics and allows
a more systematic study of that dynamics.
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I. INTRODUCTION

There is a great interest in developing quantum networks
capable of processing quantum information and performing
quantum computations. Ionicioiuet al. [1] have suggested
use of solid-state electron waveguides for this purpose, with
two parallel electron waveguides representing a two-state qu-
bit. One waveguide represents the stateu1l and the other the
state u0l. A single electron can be distributed between the
waveguides, thus representing superpositions of the statesu1l
and u0l. Couplings between the two waveguides forming a
qubit and couplings between qubits form the unitary trans-
formations necessary to do simple quantum computations. In
an ideal network of this type, an electron injected into one of
the waveguides will travel through a static network of gates
and emerge on the other side of the network in the desired
computed state. However, in real waveguide networks there
is a finite probability that an electron injected from one side
will reflect from a gate and emerge from the network on the
input side. The end result of the computation finds an elec-
tron in not one of two states, but one of four. The direction-
ality of electron flow in the waveguide requires that we gen-
eralize our analysis of waveguide qubits to waveguidequdits
sd=4d [2–4] in order to better understand the dynamics of
the system and ultimately the dynamics of specific computa-
tions. [A qudit is ad-dimensional quantum state[2–4]. Our
network is composed of qudits withd=4 which we subse-
quently call quqits. Note that a qubit is a quantum binary
digit (see Ref.[5] for the origin of bit) and a quqit is a
quantum quaternary digit.]

In this paper we study the simplest type of quantum net-
work using solid-state electron waveguides which contains
the unitary transformations necessary for quantum computa-
tion. We focus on the waveguide network first proposed by
Ionicioiu et al. [6,7] which will allow us to inject electrons
on one side and emit electrons in entangled Bell states on the
other side. The significance of producing Bell states starting
from a separable state is that it shows that both coherent
superpositions and entanglement of qubits can be success-
fully achieved in networks of quantum waveguides. Only
after establishing this basic requirement can one proceed to
consider issues such as scalability and robustness of a quan-
tum computational algorithm implemented using the
waveguides.

For concreteness, we will assume that the electron wave-
guide network is formed at a GaAs/AlxGa1−xAs interface,
although there are other ways to realize such a device. In a
typical GaAs/AlxGa1−xAs based system[8–10] a two-
dimensional electron gas(2DEG) is located<500 Å below
the surface of the GaAs/AlxGa1−xAs heterostructure. Leads
and cavities can be formed at the interface by depositing
metal gates on the surface of the heterostructure and apply-
ing a negative voltage to the metal gates. This depletes the
electrons from regions of the electron gas below the gates
and confines the electrons to the leads and cavities. The elec-
tron gas is two-dimensional because only the lowest energy
state in the direction perpendicular to the plane of the inter-
face is occupied. At temperatures ofT,0.1–2.0 K, scatter-
ing events due to electron-phonon interactions have a mean
free path,Lph,30 mm [11], and phase decoherence due to
electron-electron scattering becomes negligible[11]. Thus,
the electron waves can travel through the leads and cavities
ballistically.

We begin, in Sec. II, by introducing the states that de-
scribe the state of the network, the scattering matrices(S
matrices) that represent the dynamics of the gates, and trans-
fer matrix which governs the flow of electrons across the
network. In Sec. III, we discuss the geometry of the rotation
gates and their transmission properties. In Sec. IV, we intro-
duce a simple gate which, using the Coulomb interaction
between electrons, can entangle the electrons on different
quqits. Having established the electron dynamics in the
gates, in Sec. V we obtain some stationary states of the quan-
tum network and show that under resonance conditions Bell
states are possible. We also obtain a unitary matrix which can
be used to characterize the dynamics of the network. In Sec.
VI, we use the unitary matrix to show that, as the degree of
reflection increases, the eigenvalues of the unitary matrix
begin to display increasing level repulsion, a signature of
broken symmetry. We also show that this is accompanied
with a sharp drop in the “fidelity” of the network output.
Finally in Sec. VII, we make some concluding remarks.

II. QUANTUM NETWORK

We shall consider the waveguide network shown in Fig. 1.
It consists of four leads, the top two leads together form
quqit A and the bottom two quqitB. An electron can flow
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freely through its own quqit, but it cannot leave that quqit.
Therefore, electrons on different quqits are distinguishable.
Within a quqit the leads are coupled by “rotation” gates and
the quqits themselves are coupled by a Coulomb interaction
window (a Coulomb gate). Rotation gates act on incident
states within a quqit and create exit states which are super-
positions of states of the quqit. This type of rotation of the
state of the system is required for the implementation of
quantum logical structures. In systems of qubits some ex-
amples of such gates include the Hadamard gate and the
square root of theNOT gate[12] which we denote as theÎNOT

gate. We will show how these gates can be implemented in
quqit systems.

Several proposals for the construction of rotation gates
and other gate elements in networks of electron wave guides
are discussed in Refs.[13–16]. For simplicity, we will as-
sume that the walls of leads and rotation gates are infinitely
hard and the leads are very long compared to the length of
the gates. In the leads, the electrons propagate along thex
direction and set up standing waves along they direction.
For GaAs/AlxGa1−xAs based devices, the Fermi energy of
the two-dimensional electron gas in the waveguide isEf
=pne"

2/m, where" is Planck’s constant,ne is the density of
electrons, andm is the effective mass of the electrons. Both
ne and m depend on the materials used to construct the
2DEG. For GaAs, the electron effective mass ism
=0.067me, whereme is the mass of a free electron. When the
electron density isne=1.031012 cm−2, for example, the
Fermi energy isEf =0.048 eV and can be varied by varying
the electron density.

The electron energies in each of the four leads have the
form

E =
"2

2m
Fkn

2 + Snp

w
D2G , s1d

where w is the width of each of the leads and indexn
=1,2, . . . ,̀ denotes the number of antinodes associated with
the transverse parts of the electron states in the leads. The
electron states in the leads take the form

Fkn
sx,yd = xkn

sxdÎ 2

w
sinSnpy

w
D , s2d

where n is the quantum number associated with the trans-
verse modes in the leads andxkn

sxd is the longitudinal part of
the wave function in the leads.

We will choose the Fermi energy of electrons in the wave-
guide network so that electron wave propagation can only
occur in the first channel,n=1, in each of the leads. To
simplify notation, we will work in terms of dimensionless
scaled quantities. We choose our unit of energy to beE0
="2/2mwo

2=0.000 355 ev and our unit of length to bewo
=400Å. The scaled electron wave vector in the first channel
is thenk=k1wo. Let us write the scaled Fermi energy asE
=Ef /E0. We will assume all four leads have a widthw
=160Å. Then electron propagation can only occur if
sp /0.4d2øEø s2p /0.4d2 or 61.7øEø246.8. The scaled
Fermi energy in the first channel can be written asE=k2

+61.7
We will treat the electron flow in the waveguide network

as a scattering system and determine Fermi energies at which
we might be able to generate Bell states. We will keep our
notation and interpretation of the dynamics in the waveguide
network as close as possible to that used in the quantum
computing literature[12]. The waveguide network in Fig. 1
has two quqits which we denoteA and B. We denote the
states for electrons in quqitA which travel to the right(left)
in the upper and lower leads asu1lA and u0lA (uulA and udlA),
respectively. Similarly, we denote the states for electrons in
quqit B which travel to the right(left) in the upper and lower
leads of quqitB asu1lB andu0lB (uulB andudlB), respectively.

For simplicity, we will always assume that the electrons
are injected into the network from the left. Because of the
gates, the electron probability amplitudes in the various seg-
ments of each quqit will vary as the electrons traverse the
network from left to right. As we will show below, we can
relate the probability amplitudes for the allowed states on the
left to those on the right. Our notation for these probability
amplitudes is indicated in Fig. 1. The probability amplitudes
of right flowingelectrons will have subscripts 1 and 0 for the
upper and lower leads, respectively, for each quqit. The prob-
ability amplitudes ofleft flowing electrons will have sub-

FIG. 1. The quantum network.R locates the rotation gates andC locates the Coulomb gate which couples the stateu1l on the two
quqits.
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scriptsu and d for the upper and lower leads, respectively,
for each quqit. Probability amplitudes associated with states
u1lA and u0lA (uulA and udlA) entering quqit A on the left
(right) are denoteda1 anda0 (eu anded), respectively. Prob-
ability amplitudes associated with statesuulA and udlA (u1lA
andu0lA) leavingtheA quqit on the left(right) are denotedau
andad (e1 ande0) for the upper and lower leads, respectively.
Similarly, probability amplitudes associated with statesu1lB
andu0lB (uulB andudlB) enteringquqit B on the left(right) are
denotedb1 and b0 (fu and fd), respectively. Probability am-
plitudes associated with statesuulB and udlB (u1lB and u0lB)
leaving the B quqit on the left(right) are denotedbu andbd
(f1 and f0) for the upper and lower leads, respectively.

Each quqit individually conserves probability and elec-
trons in different quqits are distinguishable. The condition
that the electron probability be conserved in quqitA is

sua1u2 + ua0u2 + ueuu2 + uedu2d = suauu2 + uadu2 + ue1u2 + ue0u2d,

s3d

and in quqitB it is

sub1u2 + ub0u2 + ufuu2 + ufdu2d = subuu2 + ubdu2 + uf1u2 + uf0u2d.

s4d

The probabilities in each quqit may be normalized to one
without loss of generality.

Stationary states of the waveguide system in Fig. 1 can be
found as follows. As a first step we note that each gate can be
represented by a scattering matrix. The individual rotation
gate shown in Fig. 2 has a scattering matrixsr, which con-
nects the column matrix of incoming probability amplitudes,
cin=sa1,a0,eu,eddT, to the column matrix of outgoing prob-
ability amplitudes,cout=sau,ad,e1,e0dT, where T denotes
transpose of the row matrix. Thus,cout=sr ·cin where

sr =1
ru,1 ru,0 tu,u tu,d

rd,1 rd,0 td,u td,d

t1,1 t1,0 r1,u r1,d

t0,1 t0,0 r0,u r0,d

2 . s5d

We can also use a transfer matrixtr to represent the rotation
gate dynamics. The transfer matrix couples the column ma-
trix of probability amplitudes on the left, fl f t
=sa1,a0,au,addT, to the column matrix of probability ampli-

tudes, frt =se1,e0,eu,eddT, on the right. Thus,frt =trfl f t,
where

tr =1
g1,1 g1,0 g1,u g1,d

g0,1 g0,0 g0,u g0,d

gu,1 gu,0 gu,u gu,d

gd,1 gd,0 gd,u gd,d

2 . s6d

The matrix elements intr are simply related to those of theS
matrix. If we write theS matrix as a 232 matrix of 232
matricess1,1, s1,2, s2,1, and s2,2, and do the same for the
transfer matrix so that

sr = Ss1,1 s1,2

s2,1 s2,2
D and tr = St1,1 t1,2

t2,1 t2,2
D , s7d

then we find

t11 = s1,1− s1,2 ·s2,2
−1 ·s2,1, t12 = s1,2 ·s2,2

−1 ,

t21 = − s2,2
−1 ·s2,1, t22 = s2,2

−1 . s8d

These probability amplitudes can now be used to construct a
transfer matrix for the entire quantum network.

When we consider the quantum network as a whole, we
must take into account that it will be an entangled system.
We will investigate the conditions under which it can gener-
ate measurable outgoing Bell-like states on the right given
that a pair of electrons is injected into the network(one in
each quqit) on the left. The network contains a Coulomb gate
which entangles electrons in the two quqits so we must en-
large the space of states to allow for this entanglement. We
will work in the “computational basis” furnished by the di-
rect product of individual quqit basis states. Thus, we denote
the state on the left of the network by the 1631 column
matrix Fl f t, whose entriesfl,j are the probability amplitudes
associated with the stateuFl f tl on the left, where

uFl f tl = fl,1u1lAu1lB + fl,2u1lAu0lB + fl,3u1lAuulB + fl,4u1lAudlB

+ fl,5u0lAu1lB + fl,6u0lAu0lB + fl,7u0lAuulB

+ fl,8u0lAudlB+ fl,9uulAu1lB + fl,10uulAu0lB

+ fl,11uulAuulB + fl,12uulAudlB+ fl,13udlAu1lB

+ fl14udlAu0lB + fl,15udlAuulB + fl,16udlAudlB. s9d

In generaluFl f tl is an entangled state and this is reflected in
the fact that the probability amplitudesfl,j are not separable
into products of amplitudes pertaining to the individual qu-
qits. The sentangledd state on the right of the network is
given by the 1631 column matrixFrt, whose entriesfr,j
are the coefficients of the stateuFrtl on the right expressed
in the same basis as that of Eq.s9d.

If we are given the state of the network on the left,uFl f tl,
the ratio of probabilitiesub1u2 and ub0u2 to find the electron in
quqit B in state 1 or 0, respectively, is

ub0u2

ub1u2
=

kFl f tusu0lB Bk0uduFl f tl

kFl f tusu1lB Bk1uduFl f tl
. s10d

FIG. 2. The rotation gate on quqitA. The shaded region locates
the potential with heightVR and lengthL. The width of each lead
is w.
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The relative phases of these two states are given by

b0
*b1

ub0uub1u
=

kFl f tusu0lB Bk1uduFl f tl
ÎkFl f tusu0lB Bk0uduFl f tlÎkFl f tusu1lB Bk1uduFl f tl

.

s11d

Similar expressions can be written for the other states on the
left side of quqitB. The relative probabilities of states in
quqit A can be found in an analogous manner.

The transfer matrix for each rotation gate in Fig. 1 can be
represented by 16316 transfer matrices for the network. The
16316 transfer matrix for the rotation gate in theA quqit
can be written as

RA = tr
sAd

^ 1B =1
ha1,1 ha1,0 ha1,u ha1,d

ha0,1 ha0,0 ha0,u ha0,d

hau,1 hau,0 hau,u hau,d

had,1 had,0 had,u had,d

2 , s12d

where

hai,j =1
gi,j 0 0 0

0 gi,j 0 0

0 0 gi,j 0

0 0 0 gi,j

2 s13d

for i =1,0,u,d and j =1,0,u,d. The 16316 transfer matrix
for the rotation gate in theB quqit can be written as

RB = 1A ^ tr
sBd =1

tr 0 0 0

0 tr 0 0

0 0 tr 0

0 0 0 tr

2 , s14d

where0 is a 434 matrix whose elements are all zero.
The Coulomb gate, which entangles the electrons in the

two quqits, can also be represented by a 16316 matrix. We
will assume that the Coulomb gate only acts when a pair of
electrons is simultaneously in the statesu1lA and u1lB, or
simultaneously in statesuulA and uulB, at the positions indi-
cated by the shaded regions in Fig. 1. Then the 16316 ma-
trix C represents that the Coulomb gate has matrix elements
of the following form: Ca,b=1 for a=b=2, . . . ,10 anda
=b=12, . . . ,16; Ca,b=T1 for a=b=1; Ca,b=Tu for a=b
=11; Ca,b=R1 for a=1 andb=11; Ca,b=Ru for a=11 and
b=1; andCa,b=0 otherwise. HereT1 sTud denotes the trans-
mission probability amplitude for both electrons coming
from the left(right) andR1 sRud denotes the reflection prob-
ability amplitude for both electrons coming from the left
(right).

We can now write the transfer matrix for the entire quan-
tum network. If the electrons on the left side of the network
are in the stateFl f t, then the outgoing electrons on the right
will be in a state given byFrt =TQN·Fl f t, where

TQN = RB ·C ·RA ·RB s15d

is the transfer matrix for the entire quantum network.
Bell states are easy to obtain in idealized versions of this

quantum network. For example, let us assume the rotation
gates are Hadamard gates, whoseS matrix is defined ast1,1
= t1,0= t0,1=−t0,0=1/Î2, r1,1=r1,0=r0,1=r0,0=0. We assume
the Coulomb gate has the formT1=−1 andTu=R1=Ru=0.
Let us inject a pair of electrons into the network on the left
so one electron enters in the stateu1lA and the other electron
enters in the stateu1lB. Then fl,1=1 and fl,j =0 for j
=2, . . . ,16. The outgoing entangled states on the right have
the probability amplitudesfr,2=−1/Î2, fr,5= +1/Î2, and
fr,j =0 for j =1,3,4,6, . . . ,16.Thus, the incident state on the
left is uFl f tl= u1lAu1lB and the transmitted state on the right is
uFrtl=s1/Î2dsu0lAu1lB− u1lAu0lBd, a Bell singlet state. This
choice of values of transmission and reflection of the rotation
gates as well as the behavior of the Coulomb gate corre-
sponds to the idealized network in Ref.[6]. A realistic imple-
mentation of the network will include reflections from the
rotation gates which impact the probability of obtaining Bell
states at the output end.

The S matrices which represent the rotation gates and the
Coulomb gate in the solid-state wave guide must now be
determined. We must determine the actual flow of electron
probability by solving the Schrödinger equation for the elec-
tron probability amplitudes in the physical devices which
represent those gates. As we will see, it is only possible to
obtain measurable Bell-like states under very special condi-
tions. In the sections below, we obtain transfer matrices for
both the rotation and the Coulomb gates, and we then de-
scribe the resulting Bell-like states.

III. ROTATION GATES

Rotation gates couple the pair of leads that form a quqit.
Each gate is constructed by taking a pair of straight leads,
which are assumed to be separated by an infinitely high po-
tential barrier of widthd, and replacing a segment of that
infinite barrier by a segment of barrier of lengthL, width d,
and potential heightVR. We need a gate that can, for ex-
ample, transform an electron which enters the gate from the
left in the stateu1l to an electron which leaves the gate trav-
eling to the right in a coherent superposition of statesu1l and
u0l. After passage through two gates, we want the electron to
emerge in the stateu0l so that our constructed rotation gate
will have properties similar to those of an idealÎNOT gate. As
we will see below, it is possible to create such a gate in the
waveguide system.

The S matrix which represents the dynamics of the rota-
tion gate is a 434 matrix which couples the column matrix
of probability amplitudes for the incident waves,
sa1,a0,eu,eddT, (T denotes transpose) to the column matrix
of probability amplitudes for the outgoing waves,
sau,ad,e1,e0dT. We obtained theS matrix for the rotation
gate using a finite element program[17]. We use an adaptive
mesh with 91 937 nodal points to approximate the wave
function in the reaction region(the segment of quqit of
length L which contains the potential wall,VR). The wave
function in the leads is given byfsx,yd=sc/Îkdeikxfsyd,
wherec is the probability amplitude andk is the scaled wave
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vector. We use unit current normalization. The transverse
part of the wave function in each lead isfsyd
=Îs2/wdsinspy/wd, with the width of both leads equal to
w=0.4 in dimensionless units. We require that the wave
function and its first derivative be continuous at the interface
between the reaction region of the gate and the leads. We
have obtained transmission and reflection probability ampli-
tudes for different values of initial wave vector with this
method. Note that we only consider energies in the interval
61.7øEø246.8, and we stay away from the threshold ener-
gies where new propagating channels appear, so we can ne-
glect the evanescent modes[18,19].

Since our purpose is to obtain Bell-like states with this
quantum network, the ideal rotation gate is one which com-
pletely transmits the electron wave and does not allow any
reflection of the wave. We find that there are special energies
at which almost complete transmission can occur. For ex-
ample, let us consider the case where we send an electron
into the gate from the left in the upper lead. The incident
probability amplitudes aresa1=1,a0=0,eu=0,ed=0dT. In
Fig. 3 we show the probabilitiesue1u2 andue0u2 of the electron
waves transmitted to the right as a function of barrier poten-
tial VR. We see that the two probabilities become equal for
some special values of the wave vectors. The location, in
energy, of these points of equal transmission probability can
be changed by changing the barrier potentialVR. Other vari-
ables that could be used to “tune” the gate are the length and
width of the gate[15]. In Fig. 4 we show the probability
transmitted into each of the leads for the caseVR=11.75.

In Fig. 5 we show the electron wave function in position
space inside the reaction region of the rotation gate for the
wave vectork=11.0064, where we obtained the best behav-
ior of the gate. The total energy for this state isE=182.826.
For an electron incident from the left in stateu1l, we obtain
transmitted probabilitiesuauu2=0.037, uauu2=0.040, ue1u2
=0.467, andue0u2=0.451. The peak in the transmission prob-
ability at this energy occurs due to a Fano resonance in the
rotation gate[19]. The peak in the transmission probability

can be related to an eigenstate of a billiard with the same
shape as the reaction region of the rotation gate. In Fig. 6, we
show eigenstates of two billiards which closely resemble the
reaction region of the rotation gate. In Fig. 6(a), we show an
eigenstate of a billiard with boundary conditions such that
the eigenstate is zero on the hard walls, has zero slope at the
interface with the upper left lead and the two right leads, and
is zero at the interface with the lower left lead. The eigen-
value of this eigenstate isE15=181.3244. In Fig. 6(b), we
show an eigenstate for a billiard with zero-slope boundary
conditions at the interface with each of the leads. This state
has energyE15=180.6414. Both of the eigenstates in Fig. 6
are very close in shape and energy to the scattering state in
Fig. 5, a clear indication that we are observing a Fano reso-
nance.

We have also calculated the Wigner delay times of the
scattered waves over the entire energy interval 61.7øE
ø246.8. The Wigner delay time is defined as the average
slope(as a function of energy) of the S-matrix eigenphases.

FIG. 3. The transmission prob-
ability, as a function of wave vec-
tor k, from stateu1l on the left to
statesu1l and u0l on the right for
24 different values ofVR (k and
VR in dimensionless units). Solid
thick lines represent the transmit-
ted probabilityue1u2 and solid thin
lines represent transmitted prob-
ability ue0u2.

FIG. 4. The probability of transmitted and reflected waves,ue1u2,
ue0u2, uauu2, uadu2, as a function of incident wave vectork for VR

=11.75(k andVR in dimensionless units). A plane wave with unit
amplitude is incident from the left in stateu1l.
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It is plotted as a function of energy in the interval 61.7øE
ø246.8 in Fig. 7. There are five prominent delay time peaks
but the largest occurs at the energyE=182.826, where the
rotation gate exhibits a Fano resonance. At this energy there

is almost perfect transmission, but there is also an extra long
delay time associated with the transmission resonance.

TheSmatrix for the rotation gate, at the resonance energy
E=182.826 and wave vectork=11.006, is given by

sh,res=1
− 0.1902 + 0.0254i 0.1774 − 0.1116i − 0.6398 − 0.3050i − 0.3190 + 0.5571i

0.1774 − 0.1116i − 0.1912 + 0.0255i − 0.3192 + 0.5567i − 0.6397 − 0.3051i

− 0.6398 − 0.3050i − 0.3192 + 0.5567i − 0.1951 + 0.0260i 0.1733 − 0.1104i

− 0.3190 + 0.5571i − 0.6397 − 0.3051i 0.1733 − 0.1104i − 0.1947 + 0.0269i
2 . s16d

This S matrix was obtained using the finite element method described in the beginning of this section. It is useful for our
subsequent discussion to give anS matrix at incident wave vectork=10.902, which is off-resonance. TheS matrix at k
=10.902 is

sh,nonres=1
− 0.6629 + 0.0769i 0.3111 + 0.0351i − 0.0439 + 0.3667i 0.0663 − 0.5620i

0.3114 + 0.0350i 0.6629 + 0.0769i 0.0662 − 0.5617i − 0.0439 + 0.3670i

− 0.0439 + 0.3670i 0.0663 − 0.5620i 0.6629 + 0.0764i 0.3108 + 0.0348i

0.0662 − 0.5617i − 0.0439 + 0.3667i 0.3116 + 0.0349i 0.6629 + 0.0764i
2 . s17d

TheseS matrices are accurate to three significant figures.

FIG. 5. Probability distribution of electron wave function in configuration spacesx,yd inside the rotation gate at resonance for the case
when a plane wave is incident from the left in stateu1l. HereVR=11.75 andk=11.0064(k, VR, x, andy in dimensionless units).
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We will operate the quantum network at energyE
=182.826 and wave vectork=11.006 where the rotation gate
has its best performance for the geometry we have chosen.
However, before discussing the behavior of the quantum net-
work, we must first discuss a possible way to entangle the
two quqits which comprise the network.

IV. THE COULOMB GATE

We wish to entangle the electron states in the two quqits
but not allow the electrons to pass between the quqits. Ide-
ally we can accomplish this by using the Coulomb interac-
tion between the electrons in the two quqits[20].

Quantum computing algorithms rely on “accurate” unitary
transformations. The quantum gates must impart reasonably
precise phases to the electrons for the computation to be
successful. To obtain measurable Bell states for this network,
the gates must minimize reflection. In this section, we sug-
gest a simple design for a Coulomb gate which would mini-
mize reflection and maximize phase precision.

The simplest form of Coulomb gate consists of a section
of the upper leads of the two quqits of length 2Dx (in dimen-
sionless units), where the Coulomb interaction between two
electrons traveling in those leads(one in each lead) can be
activated. In order for the Coulomb gate to work, we must
simultaneously have electrons in statesu1lA and u1lB (or in

uulA and uulB) in that region of space. We assume that the
upper leads of the two quqits are separated by a distanceD.
We also assume that the two electrons have the same mo-
mentumk and enter the gate together. If the distance be-
tween the leads,D, is large compared to the width of the
leads,w, we can approximate the dynamics by that of two
electrons moving in parallel one-dimensional quantum wires.
If the two electrons enter the interaction region at the same
time with the same initial momentum, the repulsive Coulomb
force between the electrons will be perpendicular to their
motion. The potential generated in the each of the leads by
the electron in the other lead is approximately a constantVC
(in dimensionless units), within the interaction window −Dx
to +Dx and zero elsewhere. The strength of the potential is
proportional to the inverse of the distance between the leads.

Restricting our attention to just one of the electrons trav-
eling through the Coulomb gate, we model the potential in-
duced by the other electron as a simple step potential, and
treat the situation as a single electron in one dimension scat-
tering off of the step potential. The step potential is given by

V = HVC if − Dx ø x ø + Dx,

0 elsewhere.
s18d

If the initial energy of the electron satisfies the condition
E.VC+sp /0.4d2, then the transmission probability ampli-
tude is given by

FIG. 6. The eigenfunctions of billiards whose interior regions are shaped like that of the rotation gates for the caseVR=11.75.(a) The
15th eigenstate with zero-slope boundary conditions atx=−L /2 for the upper lead and atx= ±L /2 in both leads, and zero wave function at
x=−L /2 on the lower lead. The eigenvalue of this state isE=181.3244.(b) The 15th eigenstate with zero-slope boundary conditions atx
=−L /2 in both leads and atx= ±L /2 in both leads. The eigenvalue of this state isE=180.6414(x, y, VR, andE in dimensionless units).
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T =
− 4e−2isk−ldDxkl

e4ilDxsk − ld2 − sk + ld2 , s19d

wherek is the wave vector of the electron in the lead andl is
the wave vector in the potential region,

l2 = E − VC − S p

0.4
D2

. s20d

The transmission probabilityuTu2 is, in general, less than 1.
However, there are transmission resonances whenlDx
=np /2, wheren=0,1,2, . . . ,̀ . When this condition is sat-
isfied there is total transmission at energies

E = S np

2Dx
D2

+ VC + S p

0.4
D2

. s21d

Not only do we seek total transmission, but we also wish
to impart a specific phase to the electron as it travels through
the Coulomb gate. At resonances, the transmission amplitude
reduces to

T = s− 1dne−2ikDx = s− 1dne−if, s22d

wheref=2kDx is phase change of the electron wave when it
passes through the step potential.

Let us now assume that the electrons have Fermi energy
E=182.826, which is the energy at which we wish to operate
the rotation gate. Thus, in the subsequent analysis of the

Coulomb gate, we fix the energy to beE=182.826 and find
values for the height of the potential stepVC and the length
of the interaction 2Dx that will provide total transmission
with a specific value of the phase anglef=2kDx. From
above we find

Dx =
− f

2ÎE − S p

0.4
D2

with VC = FE − S p

0.4
D2GF1 −Snp

f
D2G s23d

for specific values ofE and f. The phase angle should be
less than zero,f,0, so thatDx is positive. Using the fact
that Tsfd=Tsf−2pd, we can adjust the phase anglef and
the mode numbern to obtain the desired values ofVC. Once
the value ofVC is set, we can find the separation distanceD
required between the quqits to produce such a potential,
given that the Coulomb potential can be written as

VC =
1

4pe0

e2

D

1

Eo
, s24d

where we have assumed the limit of a perfect dielectric be-
tween the leads.

FIG. 7. The Wigner delay timet as a function of energy for the energy interval 61.7øEø246.7 with VR=11.75 (t, E, and VR in
dimensionless units).
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As an example of a possible Coulomb gate, we selectn
=3 and a phase anglef=−7p /2. Then the length of the gate
is 2Dx=0.999 in dimensionless units and the potential height
generated by the two electrons isVC=32.139, which corre-
sponds to a distance between the leads ofD=1.572 in dimen-
sionless units. This gives a transmission amplitude oft= i for
each electron and no reflection. Thus, for the Coulomb gate
in Sec. II, we takeT1=−1, Tu=−1, R1=0, andRu=0.

V. STATIONARY STATES OF THE QUANTUM NETWORK

As we shall see, actually controlling the input and output
of the quantum network is not straightforward. For simplicity
let us take the simplest possible state on the left,Fl f t
=s1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0dT. This state is
somewhat unphysical because it assumes that there is no re-
flection back to the left. We can construct the transfer matrix
at the resonance energyE=182.826, using theS matrix in
Eq. (16) and the Coulomb coupler described above. We then
find that the probability amplitudes on the right are given by

Frt = s0.016 + 0.800i,0.0589 + 0.0330i,0.148 − 0.0536i,

− 0.167 − 0.010i ,− 0.115 + 0.011i,0.168 + 0.691i,

30.052 + 0.017i,− 0.154 − 0.078i ,− 0.024

+ 0.005i,0.112 + 0.146i,− 0.025 + 0.022i,− 0.061

− 0.036i ,0.037 − 0.021i,− 0.158 − 0.207i,

− 0.020 + 0.002i,0.063 + 0.004idT. s25d

Thus, on the right we have a state

uFrtl = s0.016 + 0.800idu1lAu1lB + s0.168 + 0.691idu0lAu0lB

+ ¯ , s26d

which is predominantly an entangled Bell-like triplet state.
However, there is a small amount electron flow entering
from the right which we would like to avoid. Below we give
an alternate means to determine the allowed stationary states
in the network which allow a more systematic search of al-
lowed states of the network.

A possible analog of this network in quantum information
theory is the one which uses aÎNOT gate with transmission
probability amplitudes t1,1= t0,0= tu,u= td,d=−s1+id /2 and
t1,0= t0,1= tu,d= td,u=−s1−id /2 and reflection probability am-
plitudes r i,j =0 with i =1,0 and j =1,0 and r i,j =0 with i
=u,d and j =u,d. This ideal quantum network acting on the
stateFl f t =s1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0dT gives ex-
actly the state

uFrtl = s− 0.5 + 0.5idu1lAu1lB + s− 0.5 + 0.5idu0lAu0lB,

s27d

which is a Bell state.
The transfer matrixTQN in Eq. (15) is a useful tool for

computing the output of the network on the right for given
input on the left. However, as a tool to explore the global
properties of the network, the transfer matrixTQN is an un-
wieldy object primarily because it does not preserve the
norm of the states it acts on(it is not unitary). It is therefore

desirable to find a unitary matrix that characterizes the be-
havior of the network. An obvious choice for such a unitary
matrix would be anS matrix which connects the incoming
states of the network to outgoing states of the network. How-
ever, the basis states that would be necessary for construction
of a networkSmatrix are not available to us. The basis states
we would need would include states such asu1lA

L
^ uulB

R

whereL andR stand for left and right ends of the network,
respectively, but we have no information about these states.
The transfer matrixTQN connects states of the formulL

^ ulL to states of the formulR^ ulR. Unless the coefficients
that appear in the expansions ofuFl f tl and uFrtl in the com-
putational basis are separable into products of two indepen-
dent amplitudes we cannot extract the amplitudes of states of
the form ulL ^ ulR by knowing just the transfer matrix of the
network. Entanglement indeed means that the coefficients
fl,i and fr,i of ulL ^ ulL and ulR^ ulR, respectively, are not
separable into products of single-quqit state amplitudes. The
presence of entangling operations in the network prevents us
from identifying anS matrix that characterizes the network
starting from the transfer matrix. However, as we shall show
below, it is possible to obtain a unitary matrix for the entire
network which explicitly conserves probability.

A. Construction of a unitary matrix

The unitary matrixUQN which characterizes the dynamics
of the quantum network has a very different structure from
that of the transfer matrixTQN. We can obtain the unitary
matrix from the transfer matrix via a series of transforma-
tions. These transformations involve a considerable rear-
rangement of elements of the network states. The rearranged
network states are given byuJ1l and uJ2l, where

uJ1l = fl,1u1lAu1lB + fl,2u1lAu0lB + fr,3u1lAuulB + fr,4u1lAudlB

+ fl,5u0lAu1lB + fl,6u0lAu0lB + fr,7u0lAuulB

+ fr,8u0lAudlB+ fr,9uulAu1lB + fr,10uulAu0lB

+ fl,11uulAuulB + fl,12uulAudlB+ fr,13udlAu1lB

+ fr,14udlAu0lB + fl,15udlAuulB + fl,16udlAudlB s28d

and

uJ2l = fr,1u1lAu1lB + fr,2u1lAu0lB + fl,3u1lAuulB + fl,4u1lAudlB

+ fr,5u0lAu1lB + fr,6u0lAu0lB + fl,7u0lAuulB

+ fl,8u0lAudlB+ fl,9uulAu1lB + fl,10uulAu0lB

+ fr,11uulAuulB + fr,12uulAudlB+ fl,13udlAu1lB

+ fl,14udlAu0lB + fr,15udlAuulB + fr,16udlAudlB. s29d

An explanation of how we choose these states is given in the
Appendix. The unitary matrixUQN which connects these
states satisfies the conditionJ2=UQNJ1.

The unitary matrixUQN can be obtained from the transfer
matrix TQN as follows. First write the transfer matrixTQN as
a 232 matrix containing the four 838 matricesF11, F12,
F21, andF22 as its matrix elements so that
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TQN = SF11 F12

F21 F22
D . s30d

Then introduce a new matrix,

G = SG11 G12

G21 G22
D , s31d

whose matrix elements are defined as

G11 = F11 − F12F22
−1F21, G12 = F12F22

−1,

G21 = − F22
−1F21, G22 = F22

−1.

Next introduce a matrixK which can be written as a 232
matrix of 838 matricesK11, K12, K21, andK22 so that

K = SK11 K12

K21 K22
D . s32d

Each of the matricesK11, K12, K21, andK22 can be written
as a 434 matrix whose matrix elements are 232 matrices
gm,n as follows:

K11 =1
g1,1 g1,3 g1,5 g1,7

g3,1 g3,3 g3,5 g3,7

g5,1 g5,3 g5,5 g5,7

g7,1 g7,3 g7,5 g7,7

2 ,

K12 =1
g1,2 g1,4 g1,6 g1,8

g3,2 g3,4 g3,6 g3,8

g5,2 g5,4 g5,6 g5,8

g7,2 g7,4 g7,6 g7,8

2 ,

K21 =1
g2,1 g2,3 g2,5 g2,7

g4,1 g4,3 g4,5 g4,7

g6,1 g6,3 g6,5 g6,7

g8,1 g8,3 g8,5 g8,7

2 ,

K22 =1
g2,2 g2,4 g2,6 g2,8

g4,2 g4,4 g4,6 g4,8

g6,2 g6,4 g6,6 g6,8

g8,2 g8,4 g8,6 g8,8

2 . s33d

The 232 matricesgm,n are defined as

gm,n = SG2m−1,2n−1 G2m−1,2n

G2m,2n−1 G2m,2n
D , s34d

wherem,n=1, . . . ,8.
In the next step we introduce matrixM which can be

written as a 232 matrix of 838 matricesM11, M12, M21,
andM22 such that

M = SM11 M12

M21 M22
D , s35d

where

M11 = K11 − K12K22
−1K21, M12 = K12K22

−1,

M21 = − K22
−1K21, M22 = K22

−1.

It is useful to introduce 232 submatrices of the matrixM
defined as

mm,n = SM 2m−1,2n−1 M 2m−1,2n

M 2m,2n−1 M 2m,2n
D . s36d

Then in terms of these 232 submatrices, the unitary matrix
UQN for the quantum network finally can be written as

UQN = SU11 U12

U21 U22
D , s37d

where

U11 =1
m1,1 m1,5 m1,2 m1,6

m5,1 m5,5 m5,2 m5,6

m2,1 m2,5 m2,2 m2,6

m6,1 m6,5 m6,2 m6,6

2 ,

U12 =1
m1,3 m1,7 m1,4 m1,8

m5,3 m5,7 m5,4 m5,8

m2,3 m2,7 m2,4 m2,8

m6,3 m6,7 m6,4 m6,8

2 ,

U21 =1
m3,1 m3,5 m3,2 m3,6

m7,1 m7,5 m7,2 m7,6

m4,1 m4,5 m4,2 m4,6

m8,1 m8,5 m8,2 m8,6

2 ,

U22 =1
m3,3 m3,7 m3,4 m3,8

m7,3 m7,7 m7,4 m7,8

m4,3 m4,7 m4,4 m4,8

m8,3 m8,7 m8,4 m8,8

2 . s38d

As we show below, the eigenstates of the unitary matrix give
us a new way to obtain the allowed states of the network.

B. Eigenvalues and eigenstates of UQN

Because the eigenstates of the unitary matrixUQN form a
complete orthonormal set, we can use them to obtain allowed
states of the network whose physical properties are as close
as possible to those we seek. We can expand the statesJ1
and J2 in terms of the complete set of eigenstates ofUQN.
By properly selecting the coefficients in the eigenstate ex-
pansions, we can obtain various allowed states of the quan-
tum network. As an example we have found an alternative to
the state Fl f t =s1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0dT

(which does not allow reflection to the left) and the resulting
stateFrt presented in Eq.(25). If we use an expansion in
terms of eigenstates ofUQN as described above we can ob-
tain the following states:
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Fl f t = s1.0,0,0.096 − 0.001i,− 0.025 − 0.087i,0,0,

− 0.167 + 0.032i,0.108 − 0.042i,− 0.190

+ 0.025i,0,− 0.008 + 0.022i ,0.011

− 0.002i,0.177 − 0.112i,0,0.014 + 0.0003i,

− 0.025 − 0.008idT, s39d

Frt = s0.068 + 0.676i,− 0.036 + 0.036i,0,0,− 0.095

+ 0.022i,0.089 + 0.605i,0,0,0,0,0,0,0,0,0,0dT.

s40d

The states in Eqs.s39d and s40d do not allow electrons to
enter from the right. They do allow electrons to leave on the
left and right. There is a small amount of electron probability
incident in theu0l state of theA quqit but none inu0l state of
the B quqit. This more physical state also gives rise to mea-
surable Bell states leaving the network on the right.

It is of interest to study the behavior of the eigenvalues of
the unitary matrixUQN. The manner in which they are dis-

tributed on the unit circle can give some information about
the nature of the network dynamics. A high degree of degen-
eracy in the eigenvalues can be an indicator that underlying
symmetries are playing a role in the dynamics. As an ex-
ample, let us consider a quantum network whose rotation
gate dynamics is given by theÎNOT gate. For this system,
there is no coupling between right and left flow on the net-
work and we expect a high degree of degeneracy in the ei-
genvalues ofUQN. This can be seen in Fig. 8 where we plot
the eigenvalues ofUQN on the unit circle. There are eight
distinct eigenvalues, each of which is two-fold degenerate.

More realistic choices ofS matrices for the rotation gates
are the ones given in Eqs.(16) and (17) for resonant and
nonresonant flow through the gates. These were computed by
solving the Schrödinger equation. TheseS matrices do allow
reflection. We constructUQN as described earlier out of the
transfer matrices obtained for the network with these choices
of S matrix for the rotation gates. For both cases, the Cou-
lomb gate can be adjusted to give a phase shift ofi to both
electrons with no reflection. The eigenvalues ofUQN for the
resonant and nonresonant cases are shown in Fig. 9. For
these cases, which now allow reflection, all the degeneracy
has been lifted.

In the following section, we choose a simplified one pa-
rameter family of realS matrices for the rotation gates and
systematically explore the effect of introducing reflections at
the rotation gates on the eigenvalues ofUQN.

VI. BROKEN SYMMETRY ON THE QUANTUM
NETWORK

We can systematically study the effect of reflection on the
eigenvalue spectrum ofUQN for a case where we can param-
etrize the degree of reflection on the network by a single real
parameterb. We introduce a realS matrix for the individual
rotation gates with the form

FIG. 8. Eigenvaluesl of the unitary matrixUQN for ÎNOT gates
with S-matrix elementsti,i =−s1+id /2, ti,j =−s1−id /2 (i Þ j), and
r i,j =0.

FIG. 9. Eigenvaluesl of UQN for the resonant rotation gatesr,ressk=11.006d and the nonresonant rotation gatesr,nonressk=10.902d.
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sh,b

=1
Î2Îb − b2 b s1 − bdÎ2 s1 − bdÎ2

− b Î2Îb − b2 s1 − bdÎ2 − s1 − bdÎ2

s1 − bdÎ2 s1 − bdÎ2 − Î2Îb − b2 − b

s1 − bdÎ2 − s1 − bdÎ2 b − Î2Îb − b2
2 .

s41d

For the caseb=0, thisS matrix reduces to a Hadamard gate.
The change in the eigenvalue spectrum asb increases is
shown in Fig. 10. For the caseb=0, which has no reflection,
the eigenvalues of the matrixUQN are highly degenerate.
They are given byl=−1 ssix-fold degenerated, l= +1 ssix-
fold degenerated, l=−s1+id /Î2 stwo-fold degenerated, and
l=s−1+id /Î2 stwo-fold degenerated. However, as we in-
crease the value ofb from zero the degeneracy of the
eigenvalues is broken. Above a certain value ofb we start
to see strong level repulsion, an indicator that the direc-
tional symmetries of the network are clearly broken.

We can also compute a type of fidelity to the pure Bell
state for this quantum network. We define the fidelityF of
the quantum network as

F = ukFrt
s0duFrt

sbdlu2, s42d

whereuFrt
s0dl is the output of the network forb=0. A plot of

the fidelity as a function ofb is given in Fig. 11. We see that

as we increase the amount of reflection, as measured by the
parameterb, the fidelity decreases exponentially withb.

VII. CONCLUSION

We have studied the dynamics of an entangled quantum
network consisting of two quqits constructed from hard wall
ballistic electron waveguides. We have studied the stationary
states of the waveguide network, rather than the behavior of
wave packets[6,7], because the stationary states are more
closely linked to the measurable conduction properties of
such a network. The properties of our gates are determined
from the actual flow properties of electron matter waves in
waveguides constructed from GaAs/AlxGa1−xAs heterostruc-
tures. The sizes of gates and the electron energies are realis-
tic for those systems. Our goal was to determine if it is
possible to generate Bell-like states with such a network. We
have found that, when the network is run at resonance where
reflection is minimized, Bell-like states can be generated.
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APPENDIX: CHOOSING zJ1‹ AND zJ2‹

To find a unitary matrix that describes the properties of
the network of waveguides we start with identifying two 16
component statesJ1 and J2 with equal norms that can be
constructed out of the elements ofFl f t andFrt. It is easy to
see how such states may be identified if we assume for the
time being that there is no entanglement in the system. This
would let us writeFl f t and Frt as tensor product of single
quqit states as follows:

Fl f t = sfl,2,fl,2, . . . ,fl,16d

=1
a1

a0

au

ad

2 ^ 1
b1

b0

bu

bd

2
= 31

a1

a0

0

0
2 +1

0

0

au

ad

24 ^ 31
b1

b0

0

0
2 +1

0

0

bu

bd

24 sA1d

and

Frt = sfr,1,fr,2, . . . ,fr,16d

=1
e1

e0

eu

ed

2 ^ 1
f1

f0

fu

fd

2
= 31

e1

e0

0

0
2 +1

0

0

eu

ed

24 ^ 31
f1

f0

0

0
2 +1

0

0

fu

fd

24 . sA2d

We now rewrite Eqs.s3d and s4d which express the conser-
vation of probabilities in each one of the two quqits as

sua1u2 + ua0u2d − suauu2 + uadu2d = sueuu2 + uedu2d − sue1u2 + ue0u2d
sA3d

and

sufuu2 + ufdu2d − suf1u2 + uf0u2d = sub1u2 + ub0u2d − subuu2 + ubdu2d.

sA4d

Dividing Eq. sA3d with Eq. sA4d, cross multiplying, and re-
arranging terms we obtain

FIG. 11. Fidelity as a function ofb.
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sua1u2 + ua0u2dsub1u2 + ub0u2d + suauu2 + uadu2dsubuu2 + ubdu2d

+ sue1u2 + ue0u2dsufuu2 + ufdu2d + sueuu2 + uedu2dsuf1u2 + uf0u2d

=sua1u2 + ua0u2dsubuu2 + ubdu2d + suauu2 + uadu2dsub1u2 + ub0u2d

+ sue1u2 + ue0u2dsuf1u2 + uf0u2d + sueuu2 + uedu2dsufuu2 + ufdu2d.

sA5d

EquationsA5d suggests that the states with coefficients

1
a1

a0

0

0
2 ^ 1

b1

b0

0

0
2 +1

0

0

au

ad

2
^ 1

0

0

bu

bd

2 +1
e1

e0

0

0
2 ^ 1

0

0

fu

fd

2 +1
0

0

eu

ed

2 ^ 1
f1

f0

0

0
2

sA6d

and

1
a1

a0

0

0
2 ^ 1

0

0

bu

bd

2 +1
0

0

au

ad

2
^ 1

b1

b0

0

0
2 +1

e1

e0

0

0
2 ^ 1

f1

f0

0

0
2 +1

0

0

eu

ed

2 ^ 1
0

0

fu

fd

2
sA7d

have the same norm. All the coefficients that appear in both
these states are elements ofFl f t and Frt. Even if there is
entanglement in the system the conservation of probability in
each quqit is still valid. So, in terms of the elements ofFl f t
and Frt we can construct the two statesJ1 and J2 which
have equal norm and are connected by the unitary matrix
UQN through the equationJ2=UQN·J1.
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