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Bell states in a resonant quantum waveguide network
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We show that a network of ballistic electron waveguides can generate entangled Bell-like states from
separable states when it is resonant. The network we study is grouped into individual daditsnade up of
pairs of waveguides. Rotation gates in the network produce coherent superpositions of qudit states. A Coulomb
gate entangles the qudits. We construct a unitary matrix which characterizes the network dynamics and allows
a more systematic study of that dynamics.
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I. INTRODUCTION For concreteness, we will assume that the electron wave-
guide network is formed at a GaAs/Ma _,As interface,
There is a great interest in developing quantum networkgalthough there are other ways to realize such a device. In a
capable of processing quantum information and performingypical GaAs/AlGa _,As based systen[8-10 a two-
quantum computations. lonicioiat al. [1] have suggested dimensional electron ga@DEG) is located=500 A below
use of solid-state electron waveguides for this purpose, witlthe surface of the GaAs/fba _,As heterostructure. Leads
two parallel electron waveguides representing a two-state quand cavities can be formed at the interface by depositing
bit. One waveguide represents the stajeand the other the metal gates on the surface of the heterostructure and apply-
state|0). A single electron can be distributed between theing a negative voltage to the metal gates. This depletes the
waveguides, thus representing superpositions of the sfates electrons from regions of the electron gas below the gates
and |0). Couplings between the two waveguides forming aand confines the electrons to the leads and cavities. The elec-
qubit and couplings between qubits form the unitary transtron gas is two-dimensional because only the lowest energy
formations necessary to do simple quantum computations. Istate in the direction perpendicular to the plane of the inter-
an ideal network of this type, an electron injected into one offace is occupied. At temperatures Df-0.1-2.0 K, scatter-
the waveguides will travel through a static network of gatesng events due to electron-phonon interactions have a mean
and emerge on the other side of the network in the desireftee path,L,,~30 um [11], and phase decoherence due to
computed state. However, in real waveguide networks therelectron-electron scattering becomes negligidl&]. Thus,
is a finite probability that an electron injected from one sidethe electron waves can travel through the leads and cavities
will reflect from a gate and emerge from the network on theballistically.
input side. The end result of the computation finds an elec- We begin, in Sec. Il, by introducing the states that de-
tron in not one of two states, but one of four. The direction-scribe the state of the network, the scattering matri&s
ality of electron flow in the waveguide requires that we gen-matrice$ that represent the dynamics of the gates, and trans-
eralize our analysis of waveguide qubits to wavegujddits  fer matrix which governs the flow of electrons across the
(d=4) [2-4] in order to better understand the dynamics ofnetwork. In Sec. Ill, we discuss the geometry of the rotation
the system and ultimately the dynamics of specific computagates and their transmission properties. In Sec. 1V, we intro-
tions. [A qudit is ad-dimensional quantum stafé—4]. Our  duce a simple gate which, using the Coulomb interaction
network is composed of qudits witti=4 which we subse- between electrons, can entangle the electrons on different
guently callqugits Note that a qubit is a quantum binary qugits. Having established the electron dynamics in the
digit (see Ref.[5] for the origin of bit) and a qugit is a gates, in Sec. V we obtain some stationary states of the quan-
gquantum quaternary digjt. tum network and show that under resonance conditions Bell
In this paper we study the simplest type of quantum netstates are possible. We also obtain a unitary matrix which can
work using solid-state electron waveguides which containde used to characterize the dynamics of the network. In Sec.
the unitary transformations necessary for quantum computa#l, we use the unitary matrix to show that, as the degree of
tion. We focus on the waveguide network first proposed byreflection increases, the eigenvalues of the unitary matrix
lonicioiu et al. [6,7] which will allow us to inject electrons begin to display increasing level repulsion, a signature of
on one side and emit electrons in entangled Bell states on tHeroken symmetry. We also show that this is accompanied
other side. The significance of producing Bell states startingvith a sharp drop in the “fidelity” of the network output.
from a separable state is that it shows that both cohereritinally in Sec. VII, we make some concluding remarks.
superpositions and entanglement of qubits can be success-
fully achieved in networks of quantum waveguides. Only
after establishing this basic requirement can one proceed to
consider issues such as scalability and robustness of a quan- We shall consider the waveguide network shown in Fig. 1.
tum computational algorithm implemented using thelt consists of four leads, the top two leads together form
waveguides. qugit A and the bottom two quqiB. An electron can flow

II. QUANTUM NETWORK
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FIG. 1. The quantum networkR locates the rotation gates af@llocates the Coulomb gate which couples the stateon the two
quqits.

Therefore, electrons on different qugits are distinguishable. 2
Within a quqit the leads are coupled by “rotation” gates and

the quqits themselves are coupled by a Coulomb interactio
window (a Coulomb gate Rotation gates act on incident
states within a quqit and create exit states which are supe

positions of states of the quqit. This type of rotation of the . ; . i
state of the system is required for the implementation of We will choose the Fermi energy of electrons in the wave

quantum logical structures. In systems of qubits some exgUide network so that electron wave propagation can only

amples of such gates include the Hadamard gate and thoeCCur in the first channeln=1, in each of the leads. To

square root of theioT gate[12] which we denote as th@or simplify notation, we will work in terms of dimensionless

. . .scaled quantities. We choose our unit of energy toEje
gﬁ;elt :zitévr;”:how how these gates can be implemented Iliﬁ2/2m\/\§=0.000 355 ev and our unit of length to lve

Several proposals for the construction of rotation gates 4?10’&' -[T(e scalled electrp n whave vlecéolr:m the first channel
and other gate elements in networks of electron wave guide'_Et /?En K\_leo'.” etus erte”t fe sc?ed ehrm| energ_)c/“;ﬁhs
are discussed in Ref$13-1§. For simplicity, we will as- :1;)0’8' Tﬁe\;]w elzi?rLjomne ?o :uarttic?r? (S:ana\g;la \gclzcur i
sume that the walls of leads and rotation gates are infinitely 10 4).2<E<(27r/0 42 of 62 7g<E<246 8 Th):e scaled
hard and the leads are very long compared to the length (%7 T Y e >
the gates. In the leads, the electrons propagate along the' &M €nergy in the first channel can be written s«
direction and set up standing waves along yhdirection. +61.7

For GaAs/AlGa_,As based devices, the Fermi energy of we will treat the electrc&ndflow n therav.egwde' networrl:. h
the two-dimensional electron gas in the waveguideEjs as a scattering system and determine Fermi energies at whic

= mngi2/m, wheref: is Planck’s constanty, is the density of V€ might be able to generate Bell states. We will keep our
electrons, andn is the effective mass of the electrons. Both notation and interpretation of the dynamics in the waveguide

n. and m depend on the materials used to construct th@etwork as.close as possible to th"’.lt used in th_e quantum
2|e3EG For GaAs. the electron effective mass nis  computing literaturg12]. The waveguide network in Fig. 1

=0.06'M,, wherem, is the mass of a free electron. When the has wo qugits Whi(_:h we denc_)t& and B. We de_note the
electron density isn,=1.0x 102 cni2, for example, the states for electrons in quait which travel to the rightleft)
Fermi energy is;=0.048 eV and can be varied by varying " the upper and lower leads g5, and|0)a (), and|dy),
the electron density respectively. Similarly, we denote the states for electrons in
The electron energies in each of the four leads have th uqit B which travel to the rightleft) in the upper and lower
form eads of quqiB as|1)g and|0)g (Ju)g and|d)g), respectively.
For simplicity, we will always assume that the electrons
are injected into the network from the left. Because of the
(n )2] gates, the electron probability amplitudes in the various seg-
an

freely through its own quqit, but it cannot leave that quaqit. 2  [nmy
Pi (6¥) = xi, (¥ \ sin| ==

Wheren is the quantum number associated with the trans-
verse modes in the leads a)ag(x) is the longitudinal part of
{he wave function in the leads.

(1) ments of each quqit will vary as the electrons traverse the
network from left to right. As we will show below, we can
relate the probability amplitudes for the allowed states on the
left to those on the right. Our notation for these probability

where w is the width of each of the leads and index amplitudes is indicated in Fig. 1. The probability amplitudes

=1,2, ...« denotes the number of antinodes associated witlof right flowingelectrons will have subscripts 1 and 0 for the
the transverse parts of the electron states in the leads. Thgper and lower leads, respectively, for each quqit. The prob-
electron states in the leads take the form ability amplitudes ofleft flowing electrons will have sub-

w
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The matrix elements im, are simply related to those of tise
matrix. If we write theS matrix as a 2<2 matrix of 2x 2
matricess; 3, S5 S5, ands,,, and do the same for the

FIG. 2. The rotation gate on qugk The shaded region locates
the potential with heigh¥/g and lengthL. The width of each lead

1S W- transfer matrix so that

scriptsu andd for the upper and lower leads, respectively, S11 Si2 i1 Ti2

for each quqit. Probability amplitudes associated with states =l ' and 7= " " (7)
|1)5 and |0), (Juys and |d),) entering qugit A on the left 21 %22 721 722

(right) are denotedy anda, (e, andey), respectively. Prob-  then we find

ability amplitudes associated with states, and |dy, (|1)a

and|0),) leavingthe A qugit on the lefi(right) are denoted,, T=SI1-S12°S5 S T12=S12 Sym

anday (e, andey) for the upper and lower leads, respectively. ' o o

Similarly, probability amplitudes associated with stalttg ™M T2 Ry 722552 (8)

and|0)g (|u)g and|d)g) enteringqugit B on the left(right) are
denotedb, andb, (f, and fy), respectively. Probability am-
plitudes associated with statf$g and |d)g (|1)g and |0)g)
leavingthe B qugit on the left(right) are denotedb, and by
(f, andfy) for the upper and lower leads, respectively.
Each quaqit individually conserves probability and elec-
trons in different quqits are distinguishable. The condition
that the electron probability be conserved in quiis

These probability amplitudes can now be used to construct a
transfer matrix for the entire quantum network.

When we consider the quantum network as a whole, we
must take into account that it will be an entangled system.
We will investigate the conditions under which it can gener-
ate measurable outgoing Bell-like states on the right given
that a pair of electrons is injected into the netwgoke in
each quqiton the left. The network contains a Coulomb gate
(|lag|2+ |agl? + |euf? + |egl?) = (|a 2+ ag2 + e + |eo?), which entangles electrons in the two qugits so we must en-

large the space of states to allow for this entanglement. We
(3 will work in the “computational basis” furnished by the di-
rect product of individual quqit basis states. Thus, we denote
the state on the left of the network by the X& column
2 2 2 2y — 2 2 2 2 matrix @, whose entriegh, ; are the probability amplitudes
(1Dl + B0l ol + [T = (Ibul+ Bl + [1a*+ fol). associated with the staté)”f) on the left, where

and in quqitB it is

D) = Dall)s+ 1)A0)g + Dau)g + 1),/d
The probabilities in each qugit may be normalized to one| i ¢"l| Ve d)"z' a0 ¢"3| alWe ¢"4| alde

without loss of generality. + #1,500al L + #1,600al 005 + #1,70)4|U)g
Stationary states of the waveguide system in Fig. 1 can be + O)aldbat D + 0
found as follows. As a first step we note that each gate can be 60D+ d1oU)aAl D + h1dUWal0s
represented by a scattering matrix. The individual rotation + ¢ 1lUalWs + By 1WAl Dt ¢ 1dd)al De
gate shown in Fig. 2 has a scattering masjixwhich con- + Byl al0a + by 1ddalU)s + By 1dc)al s (9)

nects the column matrix of incoming probability amplitudes,

Yin=(a1,20,€,,€y)", to the column maTtrix of outgoing prob- |y general|®;,) is an entangled state and this is reflected in
ability amplitudes, ,=(y,8q,€1,€)", where T denotes  the fact that the probability amplitudes;; are not separable

transpose of the row matrix. Thuge,=s; - ¢, where into products of amplitudes pertaining to the individual qu-
gits. The (entangledl state on the right of the network is
fu1 Tuo tuu tug given by the 16<1 column matrix®,, whose entriesp,
a1 rao tau tag are the coefficients of the staj@,,) on the right expressed
S = t t : (5) in the same basis as that of E®).
1,1 o TNy Tig :
If we are given the state of the network on the I¢dt;),
o1 too Tou fod the ratio of probabilitiesb,|2 and|b,|2 to find the electron in

We can also use a transfer mattixto represent the rotation quait B in state 1 or 0, respectively, is

gate dynamics. The transfer matrix couples the column ma- 2
trix of probability amplitudes on the left, ¢ % - (Dl (0 B<0|)|q)'“>_ (10)
=(ay,a9,a,,3q)", to the column matrix of probability ampli- Iby* (Pi|(|1)g e(1)|Dise)

042303-3



AKGUC et al.

The relative phases of these two states are given by

boby _ (D] (|0)g &(1])|Pyse)
[0o|[ba|  \(Dyge] (100 &(OD|Pr)\{(Pyge] (|1 (LD Pyre)
(11)
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is the transfer matrix for the entire quantum network.

Bell states are easy to obtain in idealized versions of this
quantum network. For example, let us assume the rotation
gates are Hadamard gates, wh&seatrix is defined as, ,
=ty 0=to.1=t0,0=1/\2, r11=r10=rp1=r00=0. We assume
the Coulomb gate has the forin=-1 andT,=R;=R,=0.

Let us inject a pair of electrons into the network on the left

left side of quqitB. The relative probabilities of states in
qugit A can be found in an analogous manner.

enters in the statgl)s. Then ¢ ;=1 and ¢ ;=0 for |
=2,...,16. The outgoing entangled states on the right have

The transfer matrix for each rotation gate in Fig. 1 can bene probability amplitudesp, ,=-1/12, ¢, s=+1/12, and

represented by 18 16 transfer matrices for the network. The
16X 16 transfer matrix for the rotation gate in tequqit
can be written as

ha; ; ha; o hay,
hay 1 hago hagy

ha,; ha,, ha,,
hag, hago hagy

ha, 4
hag g
hayq
hagq

Tl(,A) & 1B

RA: - ' (12)

where

gi,j 0 0 0
0 gi,]' 0 0
0 0 gi,j 0

0 0 0 g

ha; = (13)

fori=1,0,u,dandj=1,0,u,d. The 16X 16 transfer matrix
for the rotation gate in th& qugit can be written as

B) —

Rg=1,® 7 , (14)

O O o

0
0

Ty

where0 is a 4X 4 matrix whose elements are all zero.

¢ j=0forj=1,3,4,6,...,16Thus, the incident state on the
left is @) =|1)a|1)s and the transmitted state on the right is
|®,»=(1/12)(|0Ya|1)5=|1)a|0)5), @ Bell singlet state. This
choice of values of transmission and reflection of the rotation
gates as well as the behavior of the Coulomb gate corre-
sponds to the idealized network in RE8]. A realistic imple-
mentation of the network will include reflections from the
rotation gates which impact the probability of obtaining Bell
states at the output end.

The S matrices which represent the rotation gates and the
Coulomb gate in the solid-state wave guide must now be
determined. We must determine the actual flow of electron
probability by solving the Schrddinger equation for the elec-
tron probability amplitudes in the physical devices which
represent those gates. As we will see, it is only possible to
obtain measurable Bell-like states under very special condi-
tions. In the sections below, we obtain transfer matrices for
both the rotation and the Coulomb gates, and we then de-
scribe the resulting Bell-like states.

IIl. ROTATION GATES

Rotation gates couple the pair of leads that form a quaqit.
Each gate is constructed by taking a pair of straight leads,
which are assumed to be separated by an infinitely high po-
tential barrier of widthd, and replacing a segment of that
infinite barrier by a segment of barrier of lendthwidth d,

The Coulomb gate, which entangles the electrons in th@nd potential heigh¥/z. We need a gate that can, for ex-

two quagits, can also be represented by &1® matrix. We

ample, transform an electron which enters the gate from the

will assume that the Coulomb gate only acts when a pair ofeft in the state1) to an electron which leaves the gate trav-

electrons is simultaneously in the statds, and |1)g, or
simultaneously in statelsl), and|u)g, at the positions indi-
cated by the shaded regions in Fig. 1. Then th&x16 ma-

eling to the right in a coherent superposition of statesind
|0). After passage through two gates, we want the electron to
emerge in the stat@®) so that our constructed rotation gate

trix C represents that the Coulomb gate has matrix elementwill have properties similar to those of an ideabt gate. As

of the following form: C, ;=1 for a=p=2,...,10 anda
=p=12,...,16;C, z=T, for a=p=1; C,z=T, for a=p
=11;C, z=R,; for =1 andp=11; C, s=R, for «=11 and
B=1; andC, ;=0 otherwise. Herd, (T,) denotes the trans-

mission probability amplitude for both electrons coming Of

we will see below, it is possible to create such a gate in the
waveguide system.

The S matrix which represents the dynamics of the rota-
tion gate is a 4 4 matrix which couples the column matrix
probability amplitudes for the incident waves,

from the left(right) andR, (R,) denotes the reflection prob- (21,80,€,,€y)", (T denotes transpose¢o the column matrix

ability amplitude for both electrons coming from the left of

(right).

probability amplitudes for the outgoing waves,
(a,,a4,€1,6)". We obtained theS matrix for the rotation

We can now write the transfer matrix for the entire quan-gate using a finite element progrddi’]. We use an adaptive
tum network. If the electrons on the left side of the networkmesh with 91 937 nodal points to approximate the wave
are in the stateb;;, then the outgoing electrons on the right function in the reaction regiorithe segment of qugit of

will be in a state given byb, =T NP5, Where

TQN:RB'C'RA'RB (15)

length L which contains the potential waIvR).rThe wave
function in the leads is given by(x,y)=(c/Vk)e"*d(y),
wherec is the probability amplitude and is the scaled wave
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FIG. 3. The transmission prob-
ability, as a function of wave vec-
tor , from state|1) on the left to
states|1) and |0) on the right for
24 different values oiVg (k and
Vg in dimensionless unijs Solid
thick lines represent the transmit-
ted probability|e;|? and solid thin
lines represent transmitted prob-
ability |egl>.

Transmission Probabilities

11.04

vector. We use unit current normalization. The transversean be related to an eigenstate of a billiard with the same
part of the wave function in each lead igh(y) shape as the reaction region of the rotation gate. In Fig. 6, we
=\/(2/w)sin(wy/w), with the width of both leads equal to show eigens_tates of two bi_IIiards which _closely resemble the
w=0.4 in dimensionless units. We require that the wave'€action region of the rotation gate. In Figah we show an
function and its first derivative be continuous at the interfaceeigenstate of a billiard with boundary conditions such that
between the reaction region of the gate and the leads. V\fé‘e elgenst_ate is zero on the hard walls, has zero slope at the
have obtained transmission and reflection probability ampliintérface with the upper left lead and the two right leads, and
tudes for different values of initial wave vector with this 1S Z€ro at the interface with the lower left lead. The eigen-
method. Note that we only consider energies in the intervay@lue of this eigenstate i§;s=181.3244. In Fig. @), we
61.7<E<246.8, and we stay away from the threshold enerShOW an eigenstate for a billiard with zero-slope boundary
gies where new propagating channels appear, so we can reenditions at the interface with each of _the leads. Thls_ state
glect the evanescent modgis, 19. has energ)E15:.18O.6414. Both of the elgenstates_m Fig. 6_

Since our purpose is to obtain Bell-like states with this@'® Very close in shape and energy to the scattering state in
quantum network, the ideal rotation gate is one which comFig. 5, a clear indication that we are observing a Fano reso-
pletely transmits the electron wave and does not allow any*@nce. _ _
reflection of the wave. We find that there are special energies W& have also calculated the Wigner delay times of the
at which almost complete transmission can occur. For exScattered waves over the entire energy interval €E7
ample, let us consider the case where we send an electron246-8. The Wigner delay time is defined as the average
into the gate from the left in the upper lead. The incidentSIOP€(@s a function of energyof the Smatrix eigenphases.
probability amplitudes arga;=1,a,=0,6,=0,64=0)". In 0s
Fig. 3 we show the probabilitigs,|? and|ey|? of the electron
waves transmitted to the right as a function of barrier poten- osf
tial Vg. We see that the two probabilities become equal for
some special values of the wave vectors. The location, in
energy, of these points of equal transmission probability can
be changed by changing the barrier potertigl Other vari-
ables that could be used to “tune” the gate are the length and
width of the gate[15]. In Fig. 4 we show the probability
transmitted into each of the leads for the ca¥ge11.75.

In Fig. 5 we show the electron wave function in position
space inside the reaction region of the rotation gate for the oaf,
wave vectork=11.0064, where we obtained the best behav-
ior of the gate. The total energy for this stateEis 182.826.
For an electron incident from the left in stdfi®, we obtain
transmitted probabilities|a |°=0.037, |a,[*=0.040, |e,|* FIG. 4. The probability of transmitted and reflected wajeg?,
=0.467, andey|?=0.451. The peak in the transmission prob- |e 2, |a /2, |a4l?, as a function of incident wave vectar for Vg
ability at this energy occurs due to a Fano resonance in the11.75(x andV in dimensionless unijsA plane wave with unit
rotation gate[19]. The peak in the transmission probability amplitude is incident from the left in stai#).

04F

031

0.2

Transmission Probabilities
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FIG. 5. Probability distribution of electron wave function in configuration sgacg) inside the rotation gate at resonance for the case
when a plane wave is incident from the left in st HereVg=11.75 andk=11.0064(x, Vg, X, andy in dimensionless unijs

It is plotted as a function of energy in the interval 6%£E is almost perfect transmission, but there is also an extra long
<246.8 in Fig. 7. There are five prominent delay time peakslelay time associated with the transmission resonance.

but the largest occurs at the enerfy 182.826, where the The Smatrix for the rotation gate, at the resonance energy
rotation gate exhibits a Fano resonance. At this energy therg=182.826 and wave vectar=11.006, is given by

-0.1902 +0.0254 0.1774-0.1116 -0.6398 - 0.3050 —0.3190 + 0.557i1
0.1774-0.1116 -0.1912+0.0255 —0.3192 + 0.556/7 — 0.6397 — 0.3051

—-0.6398 - 0.3050 -0.3192 + 0.556i7 —0.1951+0.0260 0.1733-0.1104

-0.3190 + 0.55711 —0.6397 - 0.3051 0.1733-0.1104 -0.1947 +0.02609,

Shres™ (16)

This S matrix was obtained using the finite element method described in the beginning of this section. It is useful for our

subsequent discussion to give Smmatrix at incident wave vectok=10.902, vhich is off-resonance. Th& matrix at «
=10.902 is

-0.6629 +0.0769 0.3111+0.0351 -0.0439+0.366/7 0.0663 - 0.5620
0.3114+0.0350 0.6629+0.0760 0.0662-0.561i7 -0.0439+ 0.36710

—-0.0439+0.3670 0.0663-0.5620 0.6629+0.0764 0.3108 + 0.0348
0.0662 - 0.561i7 —-0.0439+0.3667 0.3116+0.0349 0.6629 +0.0764

Sh,nonres™

(17

TheseS matrices are accurate to three significant figures.
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FIG. 6. The eigenfunctions of billiards whose interior regions are shaped like that of the rotation gates for tg=Ek&5.(a) The
15th eigenstate with zero-slope boundary conditions=atL/2 for the upper lead and at+L/2 in both leads, and zero wave function at
x=-L/2 on the lower lead. The eigenvalue of this stat&#s181.3244(b) The 15th eigenstate with zero-slope boundary conditions at
=-L/2 in both leads and at=+L/2 in both leads. The eigenvalue of this stat&s180.6414(X, y, Vg, andE in dimensionless unijs

We will operate the quantum network at ener@y |u), and |u)g) in that region of space. We assume that the
=182.826 and wave vecta=11.006 where the rotation gate upper leads of the two quqits are separated by a distBnce
has its best performance for the geometry we have choseliVe also assume that the two electrons have the same mo-
However, before discussing the behavior of the quantum netmentum « and enter the gate together. If the distance be-
work, we must first discuss a possible way to entangle théween the leadsD, is large compared to the width of the
two qugits which comprise the network. leads,w, we can approximate the dynamics by that of two

electrons moving in parallel one-dimensional quantum wires.

If the two electrons enter the interaction region at the same

IV. THE COULOMB GATE time with the same initial momentum, the repulsive Coulomb

, i _force between the electrons will be perpendicular to their

We wish to entangle the electron states in the two quqit§nation. The potential generated in the each of the leads by
but not allow the electrons to pass between the quaits. Idepg glectron in the other lead is approximately a constant
ally we can accomplish this by using the Coulomb interac<;, gimensionless unijswithin the interaction window Ax
tion between the electrons in the wo quq@d]. 15 4yAx and zero elsewhere. The strength of the potential is

Quantum computing algorithms rely on “accurate” unitary Proportional to the inverse of the distance between the leads.
transformations. The quantum gates must impart reasonably pegtricting our attention to just one of the electrons trav-
precise phases to the electrons for the computation to b@ling through the Coulomb gate, we model the potential in-
successful. To obtain measurable Bell states for this networky,-aq by the other electron as a simple step potential, and
the gates must minimize reflection. In this section, we SUgyeq the situation as a single electron in one dimension scat-

gest a simple design for a Coulomb gate which would minieing off of the step potential. The step potential is given by
mize reflection and maximize phase precision.

The simplest form of Coulomb gate consists of a section {VC if — AX<x< +AX,

of the upper leads of the two quagits of lengthx2(in dimen- 10 elsewhere. (18

sionless unitg where the Coulomb interaction between two

electrons traveling in those leadsne in each leadcan be If the initial energy of the electron satisfies the condition
activated. In order for the Coulomb gate to work, we mustE>Vc+(7/0.4)?, then the transmission probability ampli-
simultaneously have electrons in statg and|1)g (or in  tude is given by

042303-7



AKGUC et al. PHYSICAL REVIEW A 69, 042303(2004)

T T T T T T T T T
250 _
200+ -
150 =
P
100 =
50 _
. Jl N
0 l 1 1 1 | 1 1 l 1
80 100 120 140 160 180 200 220 240
E

FIG. 7. The Wigner delay time as a function of energy for the energy interval 62EF<246.7 withVg=11.75(7, E, and VR in
dimensionless unijs

— 4eA(DAx ) Coulomb gate, we fix the energy to bs=182.826 and find
= AR 2 2 (19 values for the height of the potential stefp and the length
eV (k=)= (k+1) \ . X : -2

of the interaction Ax that will provide total transmission
wherex is the wave vector of the electron in the lead &l with a specific value of the phase angle=2«Ax. From

T

the wave vector in the potential region, above we find
2
2=E-V —(1) . 20 ¢
C 04 ( ) AX =

2
ko
issi it e 21/E- (—)
The transmission probabilitfT|? is, in general, less than 1. 0.4

However, there are transmission resonances whx

=vmw/2, wherev=0,1,2, ... %. When this condition is sat- 2 2
isfied there is total transmission at energies with V= {E— <O_7T4> Hl - <%T> ] (23)
_ vir 2 ar 2 .
E=\oax) TVetloa) (21)  for specific values of and ¢. The phase angle should be

less than zerog <0, so thatAx is positive. Using the fact
Not only do we seek total transmission, but we also wishthat T(#)=T(¢-27), we can adjust the phase angpeand
to impart a specific phase to the electron as it travels througthe mode number to obtain the desired values WE. Once
the Coulomb gate. At resonances, the transmission amplitud@ie value ofV.. is set, we can find the separation distafce
reduces to required between the quqits to produce such a potential,
given that the Coulomb potential can be written as

T= (_ 1)Ve—2iI<AX - (_ 1)Ve—i¢' (22)
where¢=2kAx is phase change of the electron wave when it _ 1 €1 (24)
passes through the step potential. c 4men D E,’

Let us now assume that the electrons have Fermi energy
E=182.826, which is the energy at which we wish to operatevhere we have assumed the limit of a perfect dielectric be-
the rotation gate. Thus, in the subsequent analysis of theveen the leads.
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As an example of a possible Coulomb gate, we select desirable to find a unitary matrix that characterizes the be-
=3 and a phase angte=-7=/2. Then the length of the gate havior of the network. An obvious choice for such a unitary
is 2Ax=0.999 in dimensionless units and the potential heightmatrix would be anS matrix which connects the incoming
generated by the two electrons\g=32.139, which corre- states of the network to outgoing states of the network. How-
sponds to a distance between the leaddsf..572 in dimen-  ever, the basis states that would be necessary for construction
sionless units. This gives a transmission amplitude=effor ~ of a networkS matrix are not available to us. The basis states
each electron and no reflection. Thus, for the Coulomb gateve would need would include states such |4%;® |u)g

in Sec. Il, we takeT,=-1, T,=-1, R;=0, andR,=0. whereL andR stand for left and right ends of the network,
respectively, but we have no information about these states.
H L
V. STATIONARY STATES OF THE QUANTUM NETWORK The transfer matrixT oy connects states of the form

® )t to states of the form)R® )R Unless the coefficients
As we shall see, actually controlling the input and outputthat appear in the expansions|df;;) and|®,;) in the com-
of the quantum network is not straightforward. For simplicity putational basis are separable into products of two indepen-
let us take the simplest possible state on the Idff; dent amplitudes we cannot extract the amplitudes of states of
=(1,0,0,0,0,0,0,0,0,0,0,0,0,0,070 This state is the form|)'® )R by knowing just the transfer matrix of the
somewhat unphysical because it assumes that there is no meetwork. Entanglement indeed means that the coefficients
flection back to the left. We can construct the transfer matrixg;; and ¢,; of p-® )t and [yR®|)R, respectively, are not
at the resonance enerdy=182.826, using thé& matrix in  separable into products of single-qugit state amplitudes. The
Eg. (16) and the Coulomb coupler described above. We thefpresence of entangling operations in the network prevents us
find that the probability amplitudes on the right are given byfrom identifying anS matrix that characterizes the network
] ] starting from the transfer matrix. However, as we shall show
@y =(0.016 + 0.8000.0589 +0.03300.148 - 0.0536 below, it is possible to obtain a unitary matrix for the entire

~-0.167 - 0.010- 0.115 + 0.011,0.168 + 0.691, network which explicitly conserves probability.
X0.052 + 0.01¥,— 0.154 - 0.07B- 0.024
+0.005,0.112 + 0.145- 0.025 + 0.022- 0.061
-0.036,0.037 - 0.021,- 0.158 - 0.20i,

A. Construction of a unitary matrix

The unitary matriXJqy which characterizes the dynamics
of the quantum network has a very different structure from

-0.020 + 0.0020.063 + 0.004T. (25)  that of the transfer matriX on. We can obtain the unitary
) matrix from the transfer matrix via a series of transforma-
Thus, on the right we have a state tions. These transformations involve a considerable rear-

®.) = (0.016 + 0.80D| 1)/ 10w + (0.168 + 0.69D10,/0 rangement of elemer)ts of the network states. The rearranged
[®r = ( DDAl D+ ( D100 network states are given Bi,) and|=,), where

o (26)
which is predominantly an entangled Bell-like triplet state. E0) = daDalDe + 1 A Dal0s + b o LalU)s + ¢r o Daldhe
However, there is a small amount electron flow entering + ¢ 5|00l 1)g + b1 6/0)al0)g + by 7|0V alU)s

from the right which we would like to avoid. Below we give q
an alternate means to determine the allowed stationary states * ¢, Oaldet o WalLs + ¢r 10WalO)s

in the network which allow a more systematic search of al- + b 1 Wa|Wg + @) 1dWals+ dr 1dd)al D
lowed states of the network. ' ' '
A possible analog of this network in quantum information + ¢ 1ddal0)s + dadDalu)e + B 1ddaldds  (28)

theory is the one which uses\aot gate with transmission
probability amplitudes t, ;=to o=ty =tyq=—(1+)/2 and and
t1 0=1p 1=ty g=tqu=—(1-i)/2 and reflection probability am-

plitudes r; ;=0 with i=1,0 andj=1,0 andr;;=0 with i E2) = bl DalDs+ ¢r 2 Dal0)s + 3 Da| g + ¢ al s
;tl;'tgq?nd:j(i uéde(;\isé i%egl gugn(t)urg ge(t)wgrlagccgii\r/]gsogxfhe + ¢y 5|00l g + ¢y 6|00a|0)p + 1 7|0)a|W)g
actly trllfé state T + ¢1,80ald)at+ ¢ oUa|Lg + 1,1dU)alO)s
|®,) = (— 0.5+ 0.5)|Lya|L)g + (— 0.5 + 0.5)[0) O}, + & 11lWaAlWp + & 1WAl d)et B 1dd)ADg
(27) + 114 Dal0)s + &y 19 DalWg + Py 1dDaldds.  (29)
which is a Bell state. An explanation of how we choose these states is given in the

The transfer matrixT oy in Eq. (15) is a useful tool for ~ Appendix. The unitary matridJoy which connects these
computing the output of the network on the right for given states satisfies the conditid,=UqnE ;.
input on the left. However, as a tool to explore the global The unitary matrixJqy can be obtained from the transfer
properties of the network, the transfer maffiyy is an un-  matrix Ty as follows. First write the transfer matrik,y as
wieldy object primarily because it does not preserve thea 2X 2 matrix containing the four 8 8 matricesFy4, Fio,
norm of the states it acts dit is not unitary. It is therefore  F,;, andF,, as its matrix elements so that

042303-9



AKGUC et al.
F,; F
TQN=< H 12). (30)
Fo1 Fa
Then introduce a new matrix,
Gy, G
G= ( 11 12) , (31)
G21 G22

whose matrix elements are defined as

Gu=Fy1- F12F§%F21: Gppo= FleE%,

Gp=- FE%le, Gpo= FE%-

Next introduce a matriX which can be written as a>22
matrix of 8X 8 matriceskK,;, Ki,, Kyq, andKs,, so that

K K
K:< 11 12).
Kai Kz

Each of the matrice&,,, K;5, Ks1, andK,, can be written
as a 4x 4 matrix whose matrix elements arex2 matrices
Omn as follows:

(32)

O11 913 915 Q17
| 931 933 O35 U377
Kll_ L]

O51 053 OUs5 Os7

O71 973 975 Q7.7

O1,4
O34

Ji1,6
O36

O1,8
O3,2 O3 8
05,2

07,2

Os56 Oss

J76

Os5,4

O74 J78

O2.1
Oa1
O6.1
Os.1

92,7
Qa7
O6.7
Os,7

O23 U255
Ja,5
Os,5

Os5

J4,3
O6,3
Os,3

O2.2
Oa,2
Os,2 Os.8
Os,2 Os.8
The 2X 2 matricesyy,, are defined as

O2,6
Ja,6

O2,8
Ja,8

02,4

Ua,4

Kao= (33

O6,4 Ys,6

Os,4 s

O = <G2m—l,2n—1 GZm—l,?n ) , (34)

GZm,2n-l GZm,Zn

wherem,n=1,...,8.
In the next step we introduce matrid which can be
written as a X2 matrix of 8X 8 matricesMq1, M5, My,

and M, such that
My M
M = ( 11 12)] (35)
M2 M,

where

PHYSICAL REVIEW A 69, 042303(2004)

M11: Kll_ K12K£%K211 M12: KlZKE%’

Moy == KoKz, Map=K33.

It is useful to introduce X 2 submatrices of the matriM
defined as

_ M 2m-1,2n-1 M 2m-1,2n ) (36)

Mmn = (
M 2m,2n-1

Then in terms of these 22 submatrices, the unitary matrix
Ugn for the quantum network finally can be written as

~ <U11 u12>
UQN— )
UZl U22

M 2m,2n

(37)

where

M11
Ms,1
M2,1
Me,1

M1,5
M55
M2,5
M6,5

M12
M52
M22
Me,2

M6
Ms.6
M2,6
Me6,6
M7 M1.8
Ms5,7 M58
2,7 M2.8 ’
Me,7 Me6,8

M1,3
Ms,3
M2.3
M6,3

M4
M54
M2.4
M6,4

M3,1
M7.1
Ma1
Mg,1

M35
M75
M4,5
Mg,5

M3,2
M7,2
Ma2
Mg,2

M3.6
M7.6
Ma6
Mg.6

M3,3
M7.3
M43
Mg,3

M3,7
M7
Ma7
Mg, 7

M3.4
M7.4
M4,4
Mg,4

M3.8
M7.8
Masg
Mg.8

Ug,= (38)

As we show below, the eigenstates of the unitary matrix give
us a new way to obtain the allowed states of the network.

B. Eigenvalues and eigenstates of &,

Because the eigenstates of the unitary matkiy, form a
complete orthonormal set, we can use them to obtain allowed
states of the network whose physical properties are as close
as possible to those we seek. We can expand the sftes
and =, in terms of the complete set of eigenstatedUgjy.

By properly selecting the coefficients in the eigenstate ex-
pansions, we can obtain various allowed states of the quan-
tum network. As an example we have found an alternative to
the state &y=(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0/0
(which does not allow reflection to the Igtind the resulting
state®,; presented in Eq(25). If we use an expansion in
terms of eigenstates &gy as described above we can ob-
tain the following states:
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1 . tributed on the unit circle can give some information about
the nature of the network dynamics. A high degree of degen-
eracy in the eigenvalues can be an indicator that underlying
symmetries are playing a role in the dynamics. As an ex-
ample, let us consider a quantum network whose rotation
gate dynamics is given by théwoT gate. For this system,
there is no coupling between right and left flow on the net-
05 work and we expect a high degree of degeneracy in the ei-
. . genvalues ofJg. This can be seen in Fig. 8 where we plot
the eigenvalues oblgy on the unit circle. There are eight
1 _ ? distinct eigenvalues, each of which is two-fold degenerate.
! 05 R‘? 0N 03 ! More realistic choices 0% matrices for the rotation gates
are the ones given in Eq§16) and (17) for resonant and
FIG. 8. Eigenvalues of the unitary matrixUgy for \Not gates  nonresonant flow through the gates. These were computed by
with Smatrix elementst;;=—(1+i)/2, t;;=—(1-i)/2 (i#]), and  solving the Schrodinger equation. TheSmatrices do allow
ri;j=0. reflection. We construdqy as described earlier out of the
transfer matrices obtained for the network with these choices
&, =(1.0,0,0.096 — 0.007- 0.025 - 0.087,0,0, of S matrix for the rotation gates. For both cases, the Cou-
lomb gate can be adjusted to give a phase shift tof both
~0.167+0.032,0.108 - 0.045 - 0.190 electrons with no reflection. The eigenvalueslfy for the
+0.025,0,-0.008 + 0.0220.011 resonant and nonresonant cases are shown in Fig. 9. For
~0.002,0.177 - 0.11R0,0.014 + 0.0003 Lhese cases, which now allow reflection, all the degeneracy
as been lifted.

<
L ]
L ]

-0.025-0.008", (39 In the following section, we choose a simplified one pa-
rameter family of realS matrices for the rotation gates and
@, = (0.068 + 0.676 - 0.036 + 0.0350,0,— 0.095 systematically explore the effect of introducing reflections at
rt _ . . . . 1 L) -

the rotation gates on the eigenvalues fy.
+0.022,0.089 + 0.6050,0,0,0,0,0,0,0,0)0.

(40)

VI. BROKEN SYMMETRY ON THE QUANTUM

The states in Eq9.39) and (40) do not allow electrons to
NETWORK

enter from the right. They do allow electrons to leave on the

left and right. There is a small amount of electron probability

incident in the|0) state of theA quqit but none if0) state of We can systematically study the effect of reflection on the

the B quqit. This more physical state also gives rise to meaeigenvalue spectrum &fqy for a case where we can param-

surable Bell states leaving the network on the right. etrize the degree of reflection on the network by a single real
Itis of interest to study the behavior of the eigenvalues ofparameteb. We introduce a rea® matrix for the individual

the unitary matrixUgy. The manner in which they are dis- rotation gates with the form

At Resonance Off Resonace
I . .. 1 .
L 2
»
0.5 0.5 . hd
L 3
*
-~ M - .
ShNIN < ole :
3 M
E EO
L] *
*
0.5 ¢ 05 o .
*
[ 2
-1 * . * -1 *
-1 -0.5 0 0.5 1 -1 -0.58 0 0.5 1
Re (A) Re (A)

FIG. 9. Eigenvalues. of Ugy for the resonant rotation gase.{(«x=11.006 and the nonresonant rotation gatgonred x=10.902.

042303-11



AKGUC et al. PHYSICAL REVIEW A 69, 042303(2004)

1 (a) (b) (c)
. ° .
0.5
8 . .
= 0 e L . ' ‘ '
— [ ] L ]
0.5
. . ®
-1
1(d) (e) ° (H [ 1 J °
L] L]
o* o °
. .
0.5 o o . N
= . . b
< 0e o« * s hd
,é ° o °® ° .
[ ] L ] [ [ ]
-0.5 L .
o . .
1 ®e ¢ o .
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Re (A) Re (A) Re ()

FIG. 10. Eigenvaluea of Ugy for rotation gates witts matrix s, , [see Eq(41)]. (@) b=0, (b) b=z35;, () b=135, (&) b=155 (€) b
1 1
=75 and(f) b=z.

Shp as we increase the amount of reflection, as measured by the
’ — — — arameteb, the fidelity decreases exponentially wibh
V2\b - b2 b (1-b)v2 (1-b)\2 P Y P Y
_| b 2ot @-b2 -(1-bp2 VIl. CONCLUSION
(1-b\2 (1-by2 -\2b-p? -b |

- _ R We have studied the dynamics of an entangled quantum
(1-b)v2 —(1-b)\2 b -\2yb-b? network consisting of two qugits constructed from hard wall
(41) ballistic electron waveguides. We have studied the stationary
states of the waveguide network, rather than the behavior of
For the casd=0, thisS matrix reduces to a Hadamard gate. wave packetg6,7], because the stationary states are more
The change in the eigenvalue spectrumbagcreases is closely linked to the measurable conduction properties of
shown in Fig. 10. For the case=0, which has no reflection, such a network. The properties of our gates are determined
the eigenvalues of the matridqy are highly degenerate. from the actual flow properties of electron matter waves in
They are given by\=-1 (six-fold degenerate A\=+1 (six-  waveguides constructed from GaAs/Bk,_,As heterostruc-
fold degenerate A\=—(1 +i)/\2 (two-fold degenerate and  tures. The sizes of gates and the electron energies are realis-
7\:(—1+i)/\s‘5 (two-fold degenerate However, as we in- tic for those systems. Our goal was to determine if it is
crease the value ob from zero the degeneracy of the possible to generate Bell-like states with such a network. We
eigenvalues is broken. Above a certain valueéafe start have found that, when the network is run at resonance where
to see strong level repulsion, an indicator that the direcreflection is minimized, Bell-like states can be generated.

tional symmetries of the network are clearly broken.

We can also compute a type of fidelity to the pure Bell ACKNOWLEDGMENTS
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APPENDIX: CHOOSING |E;) AND |Z,)

To find a unitary matrix that describes the properties of
the network of waveguides we start with identifying two 16
component state€,; and £, with equal norms that can be
constructed out of the elements ®f;, andd,,. It is easy to
see how such states may be identified if we assume for the
time being that there is no entanglement in the system. This
would let us write®;; and ®,; as tensor product of single
qugit states as follows:

D =

L L L 1 L 1 L b
o.6 o.a
(b 1br20 -+ 1Py 10
€1 f1
f
€ ® 0
eU fu
\ &y fq
e 0 fq 0
€ 0 fo
+ + A2
o [*le |I®lo]* s, || A2
| 0 €4 0 fd

We now rewrite Egs(3) and(4) which express the conser-

D= (122 - P16
ay b,
b
_ =l o
ay by
\ay by and
a; 0 b, 0
0 b 0
=[] %]+ || 2|+ (A1)
0 a, 0 b,
| \O ay 0 by

vation of probabilities in each one of the two quqits as

(lagf? + [aol?) = (|auf* + [ag’) = (|eyl* + [egl?) = (leyf* + [eol?)

(A3)

(Ful?+ [fal?) = ([fof> + [fol®) = (Ibal? + [0o[?) = ([by[* + [bgf?).

(A4)

Dividing Eq. (A3) with Eq. (A4), cross multiplying, and re-

and
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(1agf? + [ag|?) (|ba? + [bol?) + (ay|* + [agl ) ([by[* + [bgl) and
+ (lerf? + o) ([ul? + [fol?) + (euf* + legl) (|1 + [fol?)
=(|aq|? +[ag?) ([buf* + [byl?) + (|ay|? + ag|*) by + [bo|?)

a 0 0
+ (lexl? + e (| Faf? + [fof?) + (leul? + led (| Ful? + [fol?). 2 0 0
(A5) 0%\ b, || a
0 bd ay
. , - b, e fq 0 0
Equation(A5) suggests that the states with coefficients b . 0 0
0 € 0
® + ® + ®
0 0 0 e, fu
a by 0 0 0 0 €4 fq
2l ® bo + 0 (A7)
0 0 a,
0 0 ag . .
have the same norm. All the coefficients that appear in both
0 € 0 0 fa these states are elements &f; and ®,. Even if there is
0 € 0 0 fo entanglement in the system the conservation of probability in
@ + ® + ® each qugit is still valid. So, in terms of the elementsigf;
by 0 fy ey 0 o
¢ and ®,; we can construct the two stat&s and =, which
by 0 d € 0 have equal norm and are connected by the unitary matrix

(A6)  Ugy through the equatiof,=Uqgy-E;.

[1] Radu lonicioiu, Gehan Amaratunga, and Florin Udrea, Int. J.[11] S. Datta,Electronic Transport in Mesoscopic Syste(@am-

Mod. Phys. B15, 125(2001). bridge University Press, Cambridge, 1995

[2] R. T. Thew, K. Nemoto, A. G. White, and W. J. Munro, Phys. [12] M. A. Nielsen and |. L. ChuangQuantum Computation and
Rev. A 66, 012303(2002. Quantum Information(Cambridge University Press, Cam-

[3] V. M. Kendon, K. Zyczkowski, and W. J. Munro, Phys. Rev. A bridge, 2000.
66, 062310(2002. [13] A. Bertoni, P. Bordone, R. Brunetti, C. Jacoboni, and S. Reg-

[4] K. A. Dennison and W. K. Wootters, Phys. Rev.65, 010301 giani, Phys. Rev. Lett84, 5912(2000.
(2001). [14] J. Harris, R. Akis, and D. K. Ferry, Appl. Phys. Lef&9, 2214

[5] C. E. Shanon, Bell Syst. Tech. 27, 379(1948. (2001.

[6] Rado lonicioiu, Paolo Zanardi, and Fausto Rossi, Phys. Rev. A15] M. J. Gilbert, R. Akis, and D. K. Ferry, Appl. Phys. Le®1,
63, 050101(2002. 4284(2002.

[7] Andrea Bertoni, Rado lonicioiu, Paolo Zanardi, Fausto Rossi[16] M. J. Gilbert, R. Akis, and D. K. Ferry, Appl. Phys. Le83,
and Carlo Jacoboni, Physica 814, 10 (2002. 1453(2003.

[8] C. M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F. Hopkins, [17] G. B. Akguc and L. E. Reichl, J. Stat. Phy38, 813(2000.
and A. C. Gossard, Phys. Rev. Le@9, 506 (1992. [18] G. B. Akguc and L. E. Reichl, Phys. Rev. B4, 056221

[9] M. A. Eriksson, R. G. Beck, M. Topinka, J. A. Katine, R. M. (200YD.
Westervelt, K. L. Campman, and A. C. Gossard, Appl. Phys.[19] G. B. Akguc and L. E. Reichl, Phys. Rev. B7, 046202
Lett. 69, 671(1996. (2003.

[10] J. P. Bird, R. Akis, D. K. Ferry, A. P. S. de Moura, Y.-C. Lai, [20] Masahiro Kitagawa and Masahito Ueda, Phys. Rev. L&ft.
and K. M. Indlekofer, Rep. Prog. Phy$6, 1 (2003. 1852(1991).

042303-14



