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We analyze a quantum network, constructed with ballistic electron waveguides, which can add one-bit
binary numbers. We consider two different adder networks, one constructed with Hadamard gates and the other
constructed withÎNOT gates. Reflection of electron probability at the gates causes a loss in fidelity of the
overall calculation. A fidelity requirement for the implementation of individual rotation gates corresponding to
a probabilityp.1/2 of completing the addition successfully is found.
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I. INTRODUCTION

Quantum computation using ballistic electron waveguides
was first proposed by Ioniciouet al. [1] for a model in which
electron wave packets are propagated through a waveguide
network. In this model, two spatially separated waveguides
are used to form a “flying qubit” giving the network a direc-
tionality. The spatial location of the electron in the dual-
waveguide system corresponds to the state of the qubit. An
electron is injected from the left into either the waveguide
representing the stateu0l or the waveguide representing the
stateu1l. As the electron travels through the waveguide sys-
tem, it encounters a gate region where over some length the
potential barrier between the two waveguides is lowered.
This allows the electron probability to distribute itself be-
tween both waveguides simultaneously as it continues to
travel thus creating a linear superposition of theu0l and u1l
qubit states. However, at the region of lowered potential
some of the electron probability will be reflected back to-
wards the input side of the device. Akgucet al. [2] have
shown that when reflection is present in the system the dual-
waveguide structures actually act as four statequqits instead
of two state qubits(a quqit is a four-state system representing
a quantum quaternary digit). They use a stationary state pic-
ture to analyze the network dynamics. This gives a more
realistic picture of the waveguide network which, at low
temperature, operates at the Fermi energy. They find that the
gates can have resonances that minimize reflection and allow
the production of entangled Bell states in simple waveguide
networks. In this paper, we generalize the approach of Akguc
et al. [2] and study the effects of reflection on a waveguide
network which allows the addition of two one-bit numbers.

In order to perform simple addition we need to perform
the analogy of single-qubit and two-qubit unitary transforma-
tions in our quqit system. The standard single-qubit unitary
transformation used for quantum algorithms is the Hadamard
gate[3]. A Hadamard gate is a rotation gate(which we de-

note asĤ) that takes a state initially in theu0l or u1l states
and rotates it into a equal linear superposition of the two

states. Thus,Ĥu1l=s−u1l+ u0ld /Î2 and Ĥu0l=su1l+ u0ld /Î2.

The Hadamard gate has the property thatĤĤu1l= u1l and

ĤĤu0l= u0l. Akguc et al., in their numerical experiments on
the electron waveguide system, were able to construct a

ÎNOT gate. AÎNOT gate, similar to the Hadamard gate, takes
a state initially in theu0l or u1l states and rotates it into an
equal linear superposition of the two. A pureÎNOT gate,

which we denote asQ̂8, acts on the basis states

Q̂8u1l=−fs1+idu1l+s1−idu0lg /2 and Q̂8u0l=−fs1−idu1l
+s1+idu0lg /2 so that two applications of aÎNOT gate give

Q̂8Q̂8u0l= u1l andQ̂8Q̂8u1l= u0l. In order to keep the analysis
of both the Hadamard and theÎNOT gates as similar as pos-

sible we study a gate, denoted asQ̂, which behaves up to a
phase as a pureÎNOT gate. This gate acts on the basis states

Q̂u1l=su1l− u0ld /Î2 and Q̂u0l=su1l+ u0ld /Î2 so thatQ̂Q̂u0l
= u1l and Q̂Q̂u1l=−u0l. Computationally Q̂8 and Q̂ are
equivalent. Much of the recent theory on quantum computa-
tion networks uses the Hadamard gate and in this paper we
will study a simple adder network constructed using the Had-
amard gate[4]. However, we will also show how to construct
a simple adder network implementable with theÎNOT gate
that can be realized in a semiconductor-based
sGaAs/AlGaAsd electron waveguide network. We will then
analyze the errors introduced into the final output states of
these networks due to reflection at the rotation gates.

The standard two-qubit unitary transformation, the en-
tanglement gate(also called the controlled phase gate),
which we denoteV̂, acts on the two-qubit direct product
space which consists of basis statesu1, 1l, u1, 0l, u0, 1l, and
u0, 0l. The entanglement gate that we consider here multi-
plies the stateu1, 1l by a factor ofi. Thus, if the two-qubit
state isuFl=c1,1u1,1l+c1,0u1,0l+c0,1u0,1l+c0,0u0,0l, where
the coefficientscij (j =0,1, i =0,1) are complex numbers,

then V̂uFl= ic1,1u1,1l+c1,0u1,0l+c0,1u0,1l+c0,0u0,0l. In the
waveguide network, the entanglement gate can, in principle,
be implemented using the Coulomb interaction between two
electrons. A segment of the dielectric material between the
statesu1l of the two flying qubits is altered so that a potential
is generated in bothu1l waveguides due to the Coulomb
force between a pair of electrons traveling in those
waveguides. The dielectric material in the remainder of the
waveguide network is not altered so electrons traveling in the
u0l waveguides will not be affected by or affect other elec-
trons. Therefore, an interaction occurs only when the elec-
trons in each qubit are both traveling in theu1l waveguide.
This interaction causes an overall phase shift on theu1, 1l
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direct product state only. Reflection can also occur during the
two-qubit controlled phase shift operation. However, these
reflections differ from those of the rotation gate in that they
occur in only theu1l waveguide and then only when there is
electron probability in theu1l waveguide of the other qubit.
The confinement of the reflections to a single waveguide and
the conditional character of the reflections will introduce a
new kind of error into the networks and also effect the output
state of the system. However, the length of the interaction
region and the distance between theu1l waveguides can be
set such that a phase ofi =Î−1 is achieved[2], so we do not
consider those reflections here.

The basic computation required to implement Shor’s al-
gorithm involves modular exponentiation[5]. A complex op-
eration like modular exponentiation is realized by beginning
with simple operations then combining them to form more
complex operations. One way to perform modular exponen-
tiation is to first find a network which performs simple addi-
tion, often referred to as anadder. The adder is then used to
build a network for modular addition, which in turn is used
to find a network for modular multiplication, and finally this
is used to build the entire network for modular exponentia-
tion [6]. There are two basic computational gates required for
the implementation of these arithmetic networks. The sim-
pler of the two gates acts on two qubits and is referred to as
a controlled-notgate (CNOT gate). The CNOT gate negates
one qubit conditional on the value of a neighboring qubit.
The second gate acts on three qubits and is referred to as a
controlled-controlled-NOTgate (C2NOT gate). The C2NOT

gate negates one qubit conditional on the values of both
neighboring qubits. All of the arithmetic operations neces-
sary for the implementation of Shor’s algorithm can be con-
structed withCNOT gates,C2NOT gates, and simple single-
qubit NOT gates. The simplest arithmetic operation
combining these computational gates is the addition of two
one-bit numbers which requires three qubits, oneCNOT gate,
and oneC2NOT gate. The addition of two two-bit numbers
requires a minimum of six qubits, sevenCNOT gates, and
threeC2NOT gates. In general, the addition of twon-bit num-
bers requires 3n qubits, 4n+3 CNOT gates, and 4n C2NOT

gates. The number of gates and qubits increases rapidly as
the operations become more complex.

At low temperatures,T,0.1–2.0 K, semiconductor-
based sGaAs/Al1−xGaxAsd electron waveguide networks
have a phase coherence length of the orderLf,30–40mm
[7]. Numerical experiments have shown that a single-qubit
rotation gate as small as 0.17mm in length can produce the
desired linear superposition of states and simple models of
the Coulomb coupler region require an interaction region of
less than 0.4mm [2,8]. In principle, the simple adder net-
work is within the reach of current technologies[9]. More
sophisticated networks involving large numbers of qubit
transformations would require advancements in the materials
used to construct ballistic electron waveguides. One-
dimensional(1D) nanowires constructed of carbon nano-
tubes preserve electron phase coherence over micrometer
lengths at room temperature and are possible candidates for
the future implementation of such networks.

In subsequent sections, we focus on a quantum waveguide
network that has the ability to add two one-bit numbers. We

will show how to build the adder from either Hadamard
gates orÎNOT gates. We will focus on the effect of the error
caused by the reflection of electron probability at the
Hadamard andÎNOT gates.

II. THE QUBIT ADDER

In this section we will describe the structure of an adder
for the case of flying qubits(quqits with no reflection). A
quantum adder takes as input two binary numbers and out-
puts two binary numbers. A binary number of lengthn is
represented by a collection ofn qubits, each of which takes
on the value ofu0l or u1l. (Superpositions ofu0l andu1l, while
valid inputs, complicate the discussion and do not need to be
explicitly considered.) In general, when twon-qubit binary
numbers are added they sum to ansn+1d-qubit binary num-
ber, e.g., 1011+1100=10111. Therefore, an extra set of qu-
bits, calledcarry qubits, also need to be included. If we
denote twon-qubit numbers asn1 and n2, and a quantum

adder asÔadd, then the action of the adder on the two inputs

is Ôaddun1lun2l= un1lun1+n2l, where the stateunil denotes a
direct product state consisting ofn individual qubit states.

We study the simplest version of a quantum adder which
adds twon-qubit numbers withn=1. The computation re-
quires three qubits: two qubits to represent the two one-qubit
numbers, and one carry qubit. We label the three qubitsA, B,
andC as shown in Fig. 1. A single electron is injected into
each qubit on the left and all three electrons travel to the
right through a series of gates. The states of the electrons are
determined when they emerge on the right. Our analysis in-
volves the construction of a quantum network which can
perform the addition of two one-digit binary numbers to give
one two-digit binary numbers:1+1=10; 1+0=01; 0+1
=01; and 0+0=00. Wewill focus on the case1+1=10
sone+one=twod. An electron enters qubitA in state ufA

l l
= u1l, qubit B in state ufB

l l= u1l, and qubitC in state ufC
l l

= u0l. The number represented by the state of qubitA is
added to that represented by qubitB, using qubitC as a carry
qubit. The initial state of the computer is thereforeuFll
= ufA

l ,fB
l ,fC

l l= u1,1,0l. In our adder, the state of qubitA
should remain unchanged and the summation of the numbers
represented by qubitsA andB is a two-qubit number whose
individual digits are represented by the states of qubitsC and
B, with qubit C representing the most significant bit. There-
fore, the final state of our computer should beuFrl
= u1,0,1l, where the answer of the addition, 10, is repre-
sented by qubitsC andB read in that order.

FIG. 1. A schematic of the simple adder. QubitA is added to
qubit B using qubitC as a carry bit. The answer of the addition
operation is read schematically from bottom to top with the bottom
qubit representing the most significant bit.

M. G. SNYDER AND L. E. REICHL PHYSICAL REVIEW A70, 052330(2004)

052330-2



The quantum adder network, using either the Hadamard
or ÎNOT gates, is drawn schematically in Fig. 1 in terms of

the complex two-qubitCNOT gate, denoted asĜ2, and the

complex three-qubitC2NOT gate, denoted asĜ3. The CNOT

gate Ĝ2 flips the state of one qubit—thetarget qubit—
conditional on the state of another qubit—thecontrol qubit.
The state of the target qubit will flip only if the state of the

control qubit is u1l. The C2NOT gate Ĝ3 flips the state of a
target qubit conditional on the states oftwo control qubits.
The target qubit flips only if the state ofbothcontrol qubits is

u1l. The gatesĜ2 andĜ3 are defined differently depending on
whether one uses Hadamard orÎNOT gates. The output state
is obtained from the input state by the action of these two

complex gates such thatuFrl=Ĝ2Ĝ3uFll. The definitions of

Ĝ2 and Ĝ3 in terms of Hadamard gates and entanglement

gates are shown in Figs. 2 and 3. The definitions ofĜ2 and

Ĝ3 in terms ofÎNOT gates and entanglement gates are shown
in Figs. 4 and 5.

The order of theÎNOT gates in certain areas of the net-
work allows for a contraction in the overall number of gates

in the network. InĜ2 threeÎNOT gates fall in a row amount-
ing to three successive rotations of the qubit. In ballistic
electron waveguide qubits it is possible to perform all three

rotations with only one gate where the new gatesQ̂d3 is
simply three times longer than the originalÎNOT gate. We
show theÎNOT network here as a collection of only two

types of gates but in the analysis we treat the gatesQ̂d3 as a
single gate.

III. QUQIT OPERATIONS

The overall structure of the adder described in Sec. II
applies to the quantum network when reflection is allowed to
occur at the gates. However, the qubits become quqits and
the gates act on a larger state space. Below we describe the
adder network formed from three quqits. We follow as
closely as possible the notation in Ref.[2].

In the quqit network, electrons can flow from left to right
or from right to left due to reflection at the gates. We denote
the states of electrons in quqitA that travel to the right(left)
in the upper and lower leads asu1lA and u0lA (uulA and udlA),
respectively. Similarly, we denote the analogous states in qu-
qit B as u1lB and u0lB (uulB and udlB), respectively, and in
quqit C they are denotedu1lC and u0lC (uulC and udlC), re-
spectively.

Because of the gates, the electron probability amplitudes
in the various segments of a given quqit will vary as the
electrons traverse the network from left to right. Probability
amplitudes forright-flowing electrons will have subscripts 1
and 0 and probability amplitudes forleft-flowing electrons
will have subscriptsu andd.

We will introduce specific notation for the probability am-
plitudes on the left-hand side of each quqit and on the right-
hand side of each quqit as follows.Quqit A: probability am-
plitudes for statesu1lA andu0lA (uulA andudlA) enteringquqit
A on the left (right) are denoteda1 and a0 (eu and ed), re-
spectively; probability amplitudes for statesuulA and udlA
(u1lA and u0lA) leavingquqit A on the left(right) are denoted
au andad (e1 ande0), respectively.Quqit B: probability am-
plitudes for statesu1lB andu0lB (uulB andudlB) enteringquqit
B on the left (right) are denotedb1 and b0 (fu and fd), re-
spectively; probability amplitudes for statesuulB and udlB
(u1lB and u0lB) leavingquqit B on the left(right) are denoted
bu andbd (f1 and f0), respectively.Quqit C: probability am-
plitudes for statesu1lC andu0lC (uulC andudlC) enteringquqit
C on the left (right) are denotedc1 and c0 (gu and gd), re-
spectively; probability amplitudes for statesuulC and udlC
(u1lC andu0lC) leavingquqit C on the left(right) are denoted
cu andcd (g1 andg0), respectively.

Each quqit individually conserves electron probability and
electrons in different quqits are distinguishable. The condi-
tions for electron probability conservation on each of the
quqits are as follows: for quqitA,

ua1u2 + ua0u2 + ueuu2 + uedu2 = uauu2 + uadu2 + ue1u2 + ue0u2; s1d

for quqit B,

FIG. 2. A schematic of theCNOT gate. The Hadamard gates are
represented byH’s and the controlled phase gates are represented
by V’s.

FIG. 3. A schematic of theC2NOT gate. The Hadamard gates are
represented byH’s and the controlled phase gates are represented
by V’s.

FIG. 4. A schematic of theCNOT gate usingÎNOT gates. The
ÎNOT gates are represented byQ’s and the controlled phase gates
are represented byV’s. The dashed box indicates the threeÎNOT
gates that can be consolidated into a single gate by making the gate
three times longer.

FIG. 5. A schematic of theC2NOT gate usingÎNOT gates. The
ÎNOT gates are represented byQ’s and the controlled phase gates
are represented byV’s. The dashed boxes indicate the sets of three
ÎNOT gates that can be consolidated into single gates.
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ub1u2 + ub0u2 + ufuu2 + ufdu2 = ubuu2 + ubdu2 + uf1u2 + uf0u2; s2d

and for quqitC,

uc1u2 + uc0u2 + uguu2 + ugdu2 = ucuu2 + ucdu2 + ug1u2 + ug0u2. s3d

As described in[2], we can build the dynamics of the
adder network out of the scattering matrices(S matrices) of
the individual gates. TheSmatrix for a rotation gate in quqit
A, for example(see Fig. 6), connects the column matrix of
incoming probability amplitudes,cin=sa1,a0,eu,eddT, to the
column matrix of outgoing probability amplitudes,cout
=sau,ad,e1,e0dT. We can write anS matrix for each of the
rotation gates in the form

S=1
ru,1 ru,0 tu,u tu,d

rd,1 rd,0 td,u td,d

t1,1 t1,0 r1,u r1,d

t0,1 t0,0 r0,u r0,d

2 , s4d

wheretij is the probability amplitude for an electron entering
the gate in stateu jl s j =1,0,u,dd to be transmitted into the
stateuil si =1,0,u,dd, andr ij is the probability amplitude for
an electron entering the gate in stateu jl s j =1,0,u,dd to be
reflected into the stateuil si =1,0,u,dd. We can generalize
the Hadamard andÎNOT gates to include the possibility of
reflection. For the generalized Hadamard gate, we letSH de-
note theS matrix and we write

tuu = tud = tdu = t11 = t01 = t10 =
1 − b
Î2

,

tdd = t00 =
− s1 − bd

Î2
,

ru0 = r0u = b,

rd1 = r1d = − b,

ru1 = rd0 = Î2Îb − b2,

r1u = r0d = − Î2Îb − b2, s5d

and for the generalizedÎNOT gate we letSQ denote theS
matrix and we write

t11 = t10 = t00 = tdd = tdu = tuu =
1 − b
Î2

,

t01 = tdu =
− s1 − bd

Î2
,

r0u = rd1 = b,

r1d = ru0 = − b,

rd0 = ru1 = Î2Îb − b2,

r1u = r0d = − Î2Îb − b2, s6d

whereb is a real parameter which determines the amount of
reflection at the gate. We also write anS matrix for the areas
in the network where threeÎNOT gates can be consolidated
into one gate,sÎNOTd3, which we denote simply assSQd3

t00 = t10 = t11 = tdd = tud = tuu =
1 − b
Î2

,

t01 = tdu =
− s1 − bd

Î2
,

r1u = rd0 = b,

r0d = ru1 = − b,

rd1 = ru0 = Î2Îb − b2,

r0u = r1d = − Î2Îb − b2. s7d

Whenb=0, the gate in Eq.(5) reduces to a pure Hadamard
gate with no reflection, and the gate in Eq.(6) reduces to a
pure ÎNOT gate to within an overall phase. Both gates are
parametrized so that asb is varied from 0 to 1(total trans-
mission to total reflection) the S matrix it remains unitary.

TheS matrix acts on a state containing information about
the state of the quqit on both sides of the gate. In construct-
ing the adder network dynamics, we need to first construct
the transfer matrix for each gate. The transfer matrix con-
nects the probability amplitude on the left side of the gate to
the probability amplitude on the right side of the gate. For
example, for quqit A, it connects the column matrix
sa1,a0,au,addT on the left to the column matrix
se1,e0,eu,eddT. The transfer matrix can be constructed from
the S matrix. We first define two “swapping” matricesl and
g defined as

FIG. 6. A schematic of the Hadamard gate. Two ballistic elec-
tron waveguides are coupled by lowering the potential barrier be-
tween them. An electron traveling initially in a single waveguide
will be found in either waveguide with equal probability after cross-
ing the gate. The valueak represents the probability amplitude on
the left of the gate in thekth state,ek represents the probability
amplitude on the right of the gate in thekth state.
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l =1
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0
2, g = I − l =1

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1
2 . s8d

We can now express the transfer matrixT in terms of theS
matrix and the swapping matrices,

T = sg + l ·Sd · sl + g ·Sd−1. s9d

Given an input of unit probability in stateu1l of a given
quqit, a perfect Hadamard gate will produce an output of
uf0l=s1/Î2dsu0l− u1ld. We can compare the output of a per-
fect Hadamard gate,uf0l, with the outputufl of an imperfect
Hadamard gate withbÞ0, by computing the fidelity of the
gate,

F = zkf0uflz2. s10d

The fidelity of the gate decreases asb increases(see Fig. 7).
Due to the similar structure of theÎNOT gate, its fidelity
profile is identical to that of the Hadamard gate as the error
parameterb is increased.

The perfect entanglement gate adds a phase ofi to the
u1, 1l state in the two-qubit direct product space. In case of
two quqits there is also the possibility that the electrons will
travel through the coupling region towards the input side.
The direct product space of two quqits has 16 orthogonal
states. Two of these 16 states(u1, 1l anduu,ul) correspond to
the case of two electrons traveling through the entanglement
gate at the same time and in the same direction. We will limit

our analysis to the case where the entanglement gate func-
tions without reflection, but we will include the additional
possibility that the electrons can be traveling toward the in-
put side of the network. Thus, we will work with an en-
tanglement gate that multiplies both of the statesu1, 1l and
the uu,ul by a phase ofi =Î−1. The matrix representing the
entanglement gateVIJ (whereI ,J=A,B,C andI ÞJ) is diag-
onal, differing from the 16316 identity matrix only in the
places indicated above where the matrix elements take the
value of i =Î−1.

IV. THE QUQIT ADDER

The sequence of gate operations used to add two quqits
together is identical to that of the qubit adder. The gate op-
erations themselves must be generalized to act on the four-
state quqits. The network consists of quqitsA, B, and C.
Quqit A is added to quqitB and quqitC is used as a carry bit.
The quqit adder is an entangled network. A general input or
output state will be some superposition of the 64 orthogonal
basis statesui , j ,kl (where i , j ,k=1,0,u,d) that can be
formed from the states of the three quqitsA, B, C (in that
order). At any horizontal position along the adder, the state
of the network can be written in the form

uCl = f111u1,1,1l + f110u1,1,0l + f11uu1,1,ul + f11du1,1,dl

+ f101u1,0,1l + ¯ + fdduud,d,ul + fdddud,d,dl. s11d

The input state(on the left) of the network isuCll= u1,1,0l.
In the limit of a perfect Hadamard or a perfectÎNOT gate, the
output (on the right) is uCrl= u1,0,1l.

We study the effects of reflection at the Hadamard gates
on the adder computation by constructing a matrix which
describes the entire adder quantum network. This matrix acts
on an input state(on the left) of the network and gives an
output state(on the right). The input state and output states
are written in the direct product basis of the three quqits[see
Eq. (11)] and have 64 elements. The transfer matrices for the
entire adder quantum network, acting on individual quqits,
are generalized to the 64364 matrices,

TA = TA ^ IB ^ IC, TB = IA ^ TB ^ IC, TC = IA ^ IB ^ TC.

s12d

There are three distinct entanglement gates between the
different quqits. Each transfer matrix representing an en-
tanglement gate is diagonal, differing from the 64364 iden-
tity matrix only where the two quqits acted upon both have

FIG. 7. The fidelity of the Hadamard gate as the reflection pa-
rameter is increased. Calculations for the single Hadamard gate and
the entire network are carried out tob=0.5. Due to the similarity in
parametrization, the fidelity profile of aÎNOT gate is identical.

FIG. 8. The eigenvalues ofU
are plotted on the unit circle. At
b=0 the eigenvalues are highly
degenerate. Asb is increased the
eigenvalues spread throughout the
unit circle rapidly. The unitary
matrix corresponding to an adder
network with the ÎNOT gate
shows a similar eigenvalue
spreading.
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the value ofu1l or uul. For example, the entanglement trans-
fer matrix acting on quqitsA andC, VAC, is diagonal with a
value of i in the entriesu1,0,1lk1,0,1u, u1,1,1lk1,1,1u,
u1,u,1lk1,u,1u, u1,d,1lk1,d,1u, uu,1 ,ulku,1 ,uu,
uu,0 ,ulku,0 ,uu, uu,d,ulku,d,uu, anduu,u,ulku,u,uu, and 1’s
elsewhere.

With Hadamard gates defined on all three quqits and three
entanglement gates defined between the pairs of quqits we
now write the matrix corresponding to the action of the en-
tire computation on an input state

Tadd
H = TB · sVABd2 ·TB ·TC ·VAC ·TB · sVABd2 ·TB · sVBCd3 ·TB · sVABd2 ·TB ·VBC ·TC. s13d

Tadd
H represents the transfer matrix for the entire network. It acts on any general input state(on the left) written in a three-quqit

combined basis and gives the output state(on the right) in that basis. The reflection parameterb is kept the same for all the
Hadamard gates in the network.

The adder for theÎNOT gate network is given by

Tadd
Q = sTBd3 · sVABd2 ·TB · sTCd3 ·VAC · sTBd3 · sVABd2 ·TB · sVBCd3 · sTBd3 · sVABd2 ·TB ·VBC ·TC, s14d

wheresT id3 is the transfer matrix for a single gate which has
the same effect as thesÎNOTd3 gate. ThesT id3 gate was given
its own parametrization in Eq.(7).

A. The unitary matrix

In a computation using an actual semiconductor-based
electron waveguide, one must work with the input and output
states. However, the input and output states are unwieldy
objects.Tadd, being a transfer matrix, is not unitary and does
not preserve the norm of the states upon which it acts. Any
acceptable solution must conserve probability in the indi-
vidual quqits and it is difficult to impose this restriction us-
ing input states and output states. However, starting from
Tadd it is possible to find a unitary matrix which explicitly
conserves electron probability.

In a manner similar to changing from theS matrix to the
transfer matrix for a single Hadamard gate we swap entries
from input and output states. The entries which we swap are
found from the individual probability conservation equations
Eqs. (1), (2), and (3). A column matrix representing an un-
entangled input state on the left side of the network,uCll,
will contain amplitudes consisting of multiples of the indi-
vidual probability amplitudesai ,bj ,ck. A column matrix rep-
resenting an unentangled output state on the right side of the
network, uCrl, will contain amplitudes consisting of mul-
tiples of the individual probability amplitudesei , f j ,gk. Rear-
ranging Eqs.(1), (2), and(3) and multiplying them together
gives a single probability conservation equation[see Eq.
(A1) in the Appendix] consisting of multiples of coefficients
which are found in the input and output states. We can use
Eq. (A1) to identify states that will have the same norm.
(This method is also valid when the input and output states
are entangled, the situation encountered in the quqit adder
network when reflection is present.) We first take the input
state and decide according to the probability conservation
equation which entries to keep and which to swap with the
output state. We then construct a 64364 swapping matrixL.

The matrix is diagonal with entries of 1 where there are
entries in the input state we would like to keep and entries of
0 where there are entries in the input state we would like to
swap(see the Appendix). We then construct a second swap-
ping matrix I −L=G. A unitary matrix can now be con-
structed from the swapping matrices,L andG, andTadd

U = sG + L ·Taddd · sL + G ·Taddd−1. s15d

This unitary matrix is very useful for studying the dynamics
of the network and computing optimal states of the network
as the reflection parameterb is varied.

One way to look at the interconnectedness of the quantum
network is to study the behavior of the eigenvalues of the
quantum network. In Fig. 8 we show their behavior as we
increase the reflection parameterb. We find that the eigen-
values ofU show a rapid spreading throughout the unit circle
(Fig. 8). This eigenvalue spreading indicates that the direc-
tional properties of the quantum network are breaking down.
The unitary matrices corresponding to adder networks with
the ÎNOT gate shows similar eigenvalue spreading.

FIG. 9. A plot of the output probability of the correct answer
state u1, 0, 1l changing with reflection parameterb. Solid lines
represent the Hadamard adder and dashed lines represent theÎNOT
adder.
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B. Stationary states of the network

The states of the system on whichU acts we callprimary
states. The states which result from the action ofU on the
primary states we callresultantstates. Due to the unitarity of
U, the primary state and the resultant state for a network,
with a given reflection parameterb, will have the same norm.
To find stationary state solutions of the network which allow
the adder to function most efficiently, we first must find the
eigenvectors ofU. We expand a primary state in terms of the
eigenvectors ofU, ufil, with unknown expansion coefficients
ai

uCactl = a1uf1l + a2uf2l + ¯ + a64uf64l. s16d

U acting upon the expanded primary state gives the resultant
state written as an expansion in eigenvectors where for each
eigenstateufil the expansion coefficient is the expansion co-
efficient of the primary state multiplied by the eigenvalueei
associated with that eigenvector,

uCresl = a1e1uf1l + a2e2uf2l + ¯ + a64e64uf64l. s17d

We find a set of equations for the expansion coefficients
which are solved for a given set of required input and output
states.

The boundary conditions that we impose on the system
involve setting the incoming probability into the network.

There should be no electron probability incoming from the
output side of the network. The perfect input state for our
network is unit current incoming in the input stateu1, 1, 0l.
Once the primary and resultant states are found, we employ
the swapping matrices to recover the input and output states.
All calculations are performed for values of 0øbø0.5. For
b.0.5 the calculations become unstable.

We find that when there is no reflection present both quqit
adder networks give the same result as the corresponding
qubit adder network. However, when reflection is present it
is not possible to find simultaneously an output state with no
incoming probability and an input state with incoming prob-
ability in only theu1,1,0l state. We choose to relax our input
and output states in such a way as to find solutions which
maintain the condition of no incoming probability from the
output side of the network but allow a small change to the
incoming probability on the input side. In Fig. 9, we show
the probability of finding the correct output state as a func-
tion of b. In Fig. 10, we show the probability of having the
the correct input as a functionb.

The probability of finding the correct output of the quqit
adder decreases rapidly withb and depends on the type of
adder. For an adder constructed with Hadamard gates the
probability of finding the correct output is less than1

2 when
b.0.020. In the case of an adder built usingÎNOT gates, the
probability of finding the correct output is less than1

2 when
b.0.023.

The ratio of outgoing electron probability in two states of
a single quqit is found by

ue0u2

ue1u2
=

kCoutusu0lk0uduCoutl
kCoutusu1lk1uduCoutl

. s18d

Once all of the ratios of the probabilities outgoing in states of
a single a quqit are known the total outgoing probability is
normalized to unity and the individual probabilities are
found. The same procedure is performed for the incoming
probabilities of single quqits. There are no rotation gates on
quqit A in either adder network, and as a result there is no
reflection in quqitA. We discuss only the results for quqitB
and quqitC as quqitA maintains perfect input and output.
We find a rapid decrease in the amount of probability leaving

FIG. 10. A plot of the input probability of the perfect input state
u1, 1, 0l changing with reflection parameterb. Solid lines represent
the Hadamard adder and dashed lines represent theÎNOT adder.

FIG. 11. A plot of the probability entering and leaving the individual quqitsB and C. Solid lines represent the Hadamard adder and
dashed lines represent theÎNOT adder.
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the system in the correct states as the reflection parameterb
is increased(Fig. 11). The change in incoming probabilities
is somewhat slower and less defined. The input boundary
conditions on quqitC are relaxed most as quqitC is the carry
quqit and often under the most algorithmic control.

V. CONCLUSIONS

It is possible to implement a simple adder network with
electron waveguides. The fidelity of the calculation decreases
rapidly as the reflection is increased. Within the limits of the
calculation an adder network constructed with Hadamard
gates allows a probability greater than1

2 of finding the cor-
rect answer when the a reflection parameterbø0.020. This
corresponds to finding a single Hadamard gate of fidelityF
ù0.960. An adder network constructed withÎNOT gates al-
lows a probability greater than12 of finding the correct an-

swer when the reflection parameterbø0.023 corresponding
to a single gate of fidelityFù0.954.
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APPENDIX

Equations(1)–(3) are multiplied together and rearranged
to find a total probability conservation equation:

ua1b1c1u2 + ua1b1c0u2 + ue1f1guu2 + ue1f1gdu2 + ua1b0c1u2 + ua1b0c0u2 + ue1f0guu2 + ue1f0gdu2 + ue1fug1u2 + ue1fug0u2 + ua1bucuu2

+ ua1bucdu2 + ue1fdg1u2 + ue1fdg0u2 + ua1bdcuu2 + ua1bdcdu2 + ua0b1c1u2 + ua0b1c0u2 + ue0f1guu2 + ue0f1gdu2 + ua0b0c1u2

+ ua0b0c0u2 + ue0f0guu2 + ue0f0gdu2 + ue0fug1u2 + ue0fug0u2 + ua0bucuu2 + ua0bucdu2 + ue0fdg1u2 + ue0fdg0u2 + ua0bdcuu2

+ ua0bdcdu2 + ueuf1g1u2 + ueuf1g0u2 + uaub1cuu2 + uaub1cdu2 + ueuf0g1u2 + ueuf0g0u2 + uaub0cuu2 + uaub0cdu2 + uaubuc1u2

+ uaubuc0u2 + ueufuguu2 + ueufugdu2 + uaubdc1u2 + uaubdc0u2 + ueufdguu2 + ueufdgdu2 + uedf1g1u2 + uedf1g0u2 + uadb1cuu2

+ uadb1cdu2 + uedf0g1u2 + uedf0g0u2 + uadb0cuu2 + uadb0cdu2 + uadbuc1u2 + uadbuc0u2 + uedfuguu2 + uedfugdu2 + uadbdc1u2

+ uadbdc0u2 + uedfdguu2 + uedfdgdu2

= ue1f1g1u2 + ue1f1g0u2 + ua1b1cuu2 + ua1b1cdu2 + ue1f0g1u2 + ue1f0g0u2 + ua1b0cuu2 + ua1b0cdu2 + ua1buc1u2 + ua1buc0u2

+ ue1fuguu2 + ue1fugdu2 + ua1bdc1u2 + ua1bdc0u2 + ue1fdguu2 + ue1fdgdu2 + ue0f1g1u2 + ue0f1g0u2 + ua0b1cuu2 + ua0b1cdu2

+ ue0f0g1u2 + ue0f0g0u2 + ua0b0cuu2 + ua0b0cdu2 + ua0buc1u2 + ua0buc0u2 + ue0fuguu2 + ue0fugdu2 + ua0bdc1u2 + ua0bdc0u2

+ ue0fdguu2 + ue0fdgdu2 + uaub1c1u2 + uaub1c0u2 + ueuf1guu2 + ueuf1gdu2 + uaub0c1u2 + uaub0c0u2 + ueuf0guu2 + ueuf0gdu2

+ ueufug1u2 + ueufug0u2 + uaubucuu2 + uaubucdu2 + ueufdg1u2 + ueufdg0u2 + uaubdcuu2 + uaubdcdu2 + uadb1c1u2 + uadb1c0u2

+ uedf1guu2 + uedf1gdu2 + uadb0c1u2 + uadb0c0u2 + uedf0guu2 + uedf0gdu2 + uedfug1u2 + uedfug0u2 + uadbucuu2 + uadbucdu2

+ uedfdg1u2 + uedfdg0u2 + uadbdcuu2 + uadbdcdu2. sA1d

We identify those amplitudes in each state that must be swapped and construct two swapping matricesL and G. L is a
diagonal matrix with entries

diagsLd

= s1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,

1,1,0,0,1,1,1,1,0,0,1,1,0,0d. sA2d
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