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Ballistic electron waveguide adder
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We analyze a quantum network, constructed with ballistic electron waveguides, which can add one-bit
binary numbers. We consider two different adder networks, one constructed with Hadamard gates and the other
constructed withyNOT gates. Reflection of electron probability at the gates causes a loss in fidelity of the
overall calculation. A fidelity requirement for the implementation of individual rotation gates corresponding to
a probabilityp>1/2 of completing the addition successfully is found.
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I. INTRODUCTION JNOT gate. AYNOT gate, similar to the Hadamard gate, takes
a state initially in thel0) or |1) states and rotates it into an
Quantum computation using ballistic electron waveguidesqual linear superposition of the two. A pureioT gate,

was first proposed by lonicioet al.[1] for a model in which  which we denote asQ’, acts on the basis states
electron wave packets are propagated through a wavegui(&,m:_[(1+i)‘1>+(1_i)|o>]/2 and Q’|O>:—[(1—i)|1>
network. In this mcidel', two Sp,‘:"t".”ll!y separated Wavegwdeg_(l +i)|0)]/2 so that two applications of aNOT gate give
are used to form a “flying qubit” giving the network a direc- . " oy .
tionality. The spatial location of the electron in the dual-Q'Q'[0)=1) andQ'Q’|1)=(0). In order to keep the analysis
waveguide system corresponds to the state of the qubit. ARf both the Hadamard and theoT gates as similar as pos-
electron is injected from the left into either the waveguidesible we study a gate, denoted @swhich behaves up to a
representing the stat®) or the waveguide representing the phase as a puréOT gate. This gate acts on the basis states
state|'1>. As the electron travels through the waveguide sysQ|1)=(|1)-[0))/v2 and Q|0)=(|1)+|0))/\2 so thatQQ|0)
tem, it encounters a gate region where over some length th_e|1> and QQ|1):—|O>. Computationally @’ and Q are

potential barrier between the two waveguides is Iowered; Livalent. Much of the recent theory on guantum computa-
This allows the electron probability to distribute itself be- q ' yong P

tween both waveguides simultaneously as it continues tgo_n network; uses the Hadamard gate and in th|s paper we
travel thus creating a linear superposition of tBlgand 1) will study a simple adder netw_ork constructed using the Had-
qubit states. However, at the region of lowered potentiafa‘m‘."erI ?atécﬂ' Howeverl,(vye V‘Il'” also sbr;ow h?}w to construct
some of the electron probability will be reflected back to'?hgtlmpczr? g; ne?ggﬁze‘éﬂp ?rr]nen;a 2evr\g}comgt3r?lg?ase d
wards the input side of the device. Akget al. [2] have . :
shown that when reflection is present in the system the duaF—GaAS/AlGaAg eIe(_:tron wavegmde netyvork. We will then
waveguide structures actually act as four stptgitsinstead analyze the errors mtroduceq into the final loutput states of
of two state qubitga quqit is a four-state system representingthese networks due to ref_lectpn at the rotation gates.
a quantum quaternary digitThey use a stationary state pic- The standard two-qubit unitary transformation, the en-
ture to analyze the network dynamics. This gives a moréanglement gate(eAllso called the controlled phase gate
realistic picture of the waveguide network which, at low Which we denoteV, acts on the two-qubit direct product
temperature, operates at the Fermi energy. They find that tHgace which consists of basis staesl), |1, 0), |0, 1), and
gates can have resonances that minimize reflection and alloi®, 0. The entanglement gate that we consider here multi-
the production of entangled Bell states in simple waveguiddlies the statél, 1) by a factor ofi. Thus, if the two-qubit
networks. In this paper, we generalize the approach of Akgustate is|®)=c; 1|1, D+cy 1, 00+C 1|0, 1) +¢o o0, 0), where
et al. [2] and study the effects of reflection on a waveguidethe coefficientsc; (j=0,1,i=0,1) are complex numbers,
network which allows the addition of two one-bit numbers. then V|®)=ic, 41, 1)+c; 1,00+ 40, D+cy o0, 0. In the

In order to perform simple addition we need to performwaveguide network, the entanglement gate can, in principle,
the analogy of single-qubit and two-qubit unitary transforma-be implemented using the Coulomb interaction between two
tions in our qugit system. The standard single-qubit unitaryelectrons. A segment of the dielectric material between the
transformation used for quantum algorithms is the Hadamargtated1) of the two flying qubits is altered so that a potential
gate[3]. A Hadamard gate is a rotation gatehich we de- is generated in bothl) waveguides due to the Coulomb

note asH) that takes a state initially in thi®) or |1) states force between a pair of electrons traveling in those
and rotates it into a equal linear superposition of the tdeavegu!(cjies. The Ei'eleCtriC| matgrial i? the remaindl_er of ﬂ;]e

YN — 5 AN — 5 waveguide network is not altered so electrons traveling in the
states. ThusH|1)=(-|1)+|0))/¥2 and H|O>:£|1>+|O>)/\2. |0y waveguides will not be affected by or affect other elec-
The Hadamard gate has the property théd|1)=[1) and  rons. Therefore, an interaction occurs only when the elec-
HH|0)=|0). Akguc et al, in their numerical experiments on trons in each qubit are both traveling in tj% waveguide.
the electron waveguide system, were able to construct @his interaction causes an overall phase shift on|thel)
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direct product state only. Reflection can also occur during the aubitA [1 1] QubitA
two-qubit controlled phase shift operation. However, these %

reflections differ from those of the rotation gate in that they 0
occur in only the|1l) waveguide and then only when there is Qubit A
electron probability in thél) waveguide of the other qubit. —— . ngns
The confinement of the reflections to a single waveguide and
the conditional character of the reflections will introduce a ) , o
new kind of error into the networks and also effect the output /G- 1. A schematic of the simple adder. Qukitis added to
state of the system. However, the length of the interactioffuPit B using qubitC as a carry bit. The answer of the addition
region and the distance between thbwaveguides can be ope_ratlon is reqd schematlcall_y frqm bott_om to top with the bottom
set such that a phase if V-1 is achieved2], so we do not  9ubit representing the most significant bit.

consider those reflections here.

The basic computation required to implement Shor’s al-will show how to build the adder from either Hadamard
gorithm involves modular exponentiati¢f]. A complex op-  gates orWNOT gates. We will focus on the effect of the error
eration like modular exponentiation is realized by beginningcaused by the reflection of electron probability at the
with simple operations then combining them to form moreHadamard andNOT gates.
complex operations. One way to perform modular exponen-
tiation is to first find a network which performs simple addi-
tion, often referred to as amdder The adder is then used to Il. THE QUBIT ADDER
build a network for modular addition, which in turn is used | yhis section we will describe the structure of an adder

to find a network for modular multiplication, and finally this for the case of flying qubitgqugits with no reflection A

is used to build the entire network for modular exponentia-qu‘,ﬂm".n adder takes as input two binary numbers and out-

tion [6]. There are two basic computational gates required fobuts two binary numbers. A binary number of lengttis

the implementation of these arlthmet_lc networks. The Slm'represented by a collection ofqubits, each of which takes
pler of the two gates acts on two qubits and is referred to a8 the value of0) or |1). (Superpositions o) and|1), while

a controllled-not_gate (CNOT gat§. The CNOT gate negates g inputs, complicate the discussion and do not need to be
one qubit conditional on the value of a neighboring qu't'epricitIy considered. In general, when twa-qubit binary
The second gate acts on three qubits and is referred to asAmbers are added they sum to @r 1)-qubit binary num-
controlled-controlled-NOTgate (C*NOT gatg. The C*NOT ber, e.g., 1011+1100=10111. Therefore, an extra set of qu-

gate negates one qubit conditiqnal on the va!ues of bOtrf.')its, calledcarry qubits also need to be included. If we
ne|ghbor|ng.qub|ts. All qf the anthr:nenc operauons Neces-yanote twon-qubit numbers as;, and n,, and a quantum
sary for the implementation of Shor’s algorithm can be con- A i .
structed withcNoOT gates,c?NOT gates, and simple single- adQer a0,4q then the action of the adder on the two inputs
qubit NOT gates. The simplest arithmetic operationis O.qdni)|nz)=|ny)[ny+ny), where the statén;) denotes a
combining these computational gates is the addition of twalirect product state consisting ofindividual qubit states.
one-bit numbers which requires three qubits, oneT gate, We study the simplest version of a quantum adder which
and onec2NOT gate. The addition of two two-bit numbers adds twon-qubit numbers withn=1. The computation re-
requires a minimum of six qubits, sevamnoT gates, and quires three qubits: two qubits to represent the two one-qubit
threec2NOT gates. In general, the addition of twebit num-  numbers, and one carry qubit. We label the three quki3,
bers requires 8 qubits, 4+3 cNOT gates, and @ CNOT and C as shown in Fig. 1. A single electron is injected into
gates. The number of gates and qubits increases rapidly &ch qubit on the left and all three electrons travel to the
the operations become more complex. right through a series of gates. The states of the electrons are

At low temperatures, T~0.1-2.0 K, semiconductor- determined when they emerge on the right. Our analysis in-
based (GaAs/Al_GaAs) electron waveguide networks Volves the construction of a quantum network which can
have a phase coherence length of the otder 30—40um perform the addition of two one-digit binary numbers to give
[7]. Numerical experiments have shown that a single-qubiene two-digit binary numbers1+1=10; 1+0=01; 0+1
rotation gate as small as 0. in length can produce the =01; and 0+0=00. Wewill focus on the casel+1=10
desired linear superposition of states and simple models dpne+one=twp An electron enters qubid in state|d})
the Coulomb coupler region require an interaction region of|1), qubit B in state|¢)=|1), and qubitC in state|¢c)
less than 0.4:m [2,8]. In principle, the simple adder net- =|0). The number represented by the state of qubits
work is within the reach of current technologig®. More  added to that represented by qubjtusing qubitC as a carry
sophisticated networks involving large numbers of qubitqubit. The initial state of the computer is therefd®')
transformations would require advancements in the materials| g, #g, #c)=|1,1,0. In our adder, the state of qubk
used to construct ballistic electron waveguides. Oneshould remain unchanged and the summation of the numbers
dimensional(1D) nanowires constructed of carbon nano-represented by qubitd andB is a two-qubit number whose
tubes preserve electron phase coherence over micrometi@adividual digits are represented by the states of qubigsd
lengths at room temperature and are possible candidates B¢ with qubit C representing the most significant bit. There-
the future implementation of such networks. fore, the final state of our computer should b@&")

In subsequent sections, we focus on a quantum waveguidel1,0,1, where the answer of the addition, 10, is repre-
network that has the ability to add two one-bit numbers. Wesented by qubit€ andB read in that order.

Qubit B |1
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FIG. 2. A schematic of thenoT gate. The Hadamard gates are
represented by’s and the controlled phase gates are represented FIG. 4. A schematic of thenoT gate using/NOT gates. The
by V's. VNOT gates are represented BYs and the controlled phase gates
are represented by’s. The dashed box indicates the thréeOT

The quantum adder network, using either the Hadamargates tlhat can be consolidated into a single gate by making the gate
or \NOT gates, is drawn schematically in Fig. 1 in terms of ("fee times longer.
the complex two-qubitNOT gate, denoted aéz, and the In the qugit network, electrons can flow from left to right
complex three-qubit?nOT gate, denoted a6, The cnot  OF from right to left due to reflection at the gates. We denote
gate éz flips the state of one qubit—thearget qubit— the states of electrons in quditthat travel to the righgleft)

hy . . in the upper and lower leads &9, and|0), (|u)a and|d),),

%?]r;d'stt'g{:aagg?h;h?aftiie oft)f'ino_tﬁl?l_r qgr?llt_'fmt;?;?euglft.the respectively. Similarly, we denote the analogous states in qu-
get qubit will Thp only 1 qit B as |1)g and |0)g (|u)s and |d)g), respectively, and in

control qubit is|1). The c?NOT gate G; flips the state of a quqit C they are denotedl)c and |0)c (Ju)c and |d)c), re-
target qubit conditional on the states twfo control qubits.  spectively.
The target qubit flips only if the state bbthcontrol qubitsis ~ Because of the gates, the electron probability amplitudes
|1). The gate$5, andGs, are defined differently depending on in the various segments of a given quqit will vary as the
whether one uses Hadamard \oI0T gates. The output state electrons traverse the network from left to right. Probability

is obtained from the input state by the action of these twMPlitudes foright-flowing electrons will have subscripts 1
A A o and 0 and probability amplitudes foeft-flowing electrons
complex gates such thab")=G,G;|®'). The definitions of il have subscriptai andd.

G, and G; in terms of Hadamard gates and entanglement We will introduce specific notation for the probability am-

gates are shown in Figs. 2 and 3. The deﬁnitioné@fand plitudes on the left-hand side of each qugit and on the right-
Gaint £ NGT qat d entanal t aat h hand side of each quqit as follow®Qugit A probability am-
insléri]gserzlni\r?dg Tgates and entangiement gates are SNOWlh iy, des for stateél), and|0), (|, and|d),) enteringqugit

— . . A on the left(right) are denotedy; and a; (e, and gy), re-
The order of the/NOT gates in certain areas of the net- spectively; probability amplitudes for statés}A and |d),

work allows for apontractlon in the overall number of gates(|l>A and|0),) leavingqugit A on the left(right) are denoted
in the network. InG, three \NOT gates fall in a row amount- a, anday (e, andey), respectivelyQugit B: probability am-
ing to three successive rotations of the qubit. In ballisticplitudes for statefl)g and|0)g (|u)g and|d)g) enteringqugit
electron waveguide qubits it is possible to perform all threeB on the left(right) are denoted; and by (fé,sand fd),| re-
rotations with only one gate where the new gé@?3 is  SPectively; probability amplitudes for states)s and |d)g
simply three timez Iongegr] than the originaloT gﬁg). We (|1 and|0s) leavingquqit B on the left(right) are denoted
show the \NOT network here as a collection of only two b, andby (f, andfo), respectivelyQuait C: probability am-

, , - plitudes for stategl)c and|0)¢ (Juyc and|d)c) enteringquagit
types of gates but in the analysis we treat the g&gé as a C on the left(right) Care dencoted:(i and Coc(gu andgy), re-

single gate. spectively; probability amplitudes for statés)c and |d)c
(|1)c and|0)¢) leavingqugit C on the left(right) are denoted
c, andcy (g7 andgp), respectively.
Il QUQIT OPERATIONS Each quaqit individually conserves electron probability and
The overall structure of the adder described in Sec. ||§Iectrons in different quqi_ts are distingqishable. The condi-
applies to the quantum network when reflection is allowed tdions for electron probability conservation on each of the
occur at the gates. However, the qubits become qugits ar@Hdits are as follows: for quga,
the gates act on a larger state space. Be_zlow we describe the |a1|2+ |ao|2+ |eu|2+ |ed|2: |au|2+ ‘ad|2+ |el|2+ |e0|2; (1)
adder network formed from three qugits. We follow as ]
closely as possible the notation in REZ). for quaqit B,

FIG. 5. A schematic of th€2NOT gate using/NOT gates. The
FIG. 3. A schematic of the?NOT gate. The Hadamard gates are VNOT gates are represented s and the controlled phase gates
represented byd’s and the controlled phase gates are representedre represented by's. The dashed boxes indicate the sets of three
by V's. VNOT gates that can be consolidated into single gates.
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FIG. 6. A schematic of the Hadamard gate. Two ballistic elec-
tron waveguides are coupled by lowering the potential barrier be-

tween them. An electron traveling initially in a single waveguide
will be found in either waveguide with equal probability after cross-
ing the gate. The valug, represents the probability amplitude on
the left of the gate in th&th state,e, represents the probability
amplitude on the right of the gate in theh state.

[0+ [bol? + [fu + [faf? = [by|? + bl + [ 1 + [fol% (2)
and for quqitC,

[€1f? + [col? + [gul? + |99l* = el + [cg® + |91l + gol*. (3)

As described in[2], we can build the dynamics of the
adder network out of the scattering matri¢g€smatrice$ of
the individual gates. Th& matrix for a rotation gate in quqit
A, for example(see Fig. §, connects the column matrix of
incoming probability amplitudesf;,=(a;,a9,€,,6y)", to the
column matrix of outgoing probability amplitudes),,:
=(a,,a4,€1,60)". We can write arS matrix for each of the
rotation gates in the form
tu,u tu,d

IFu,l ru,O

rg1 fao tau tdad

(4)

tir tio Ty Tig

tox to0 Tou fod

wheret;; is the probability amplitude for an electron entering
the gate in statéj) (j=1,0,u,d) to be transmitted into the
stateli) (i=1,0,u,d), andrj; is the probability amplitude for
an electron entering the gate in stae(j=1,0,u,d) to be
reflected into the statg) (i=1,0,u,d). We can generalize
the Hadamard an@NOT gates to include the possibility of
reflection. For the generalized Hadamard gate, w&late-
note theS matrix and we write

1-b
tuu:tud:tdu:tllztOl:th: [~
V2

-(1-b

tdd:t = =
00 V2

rw=rou=b,

g1 =rig=-Dh,

I’ul = rdo = \5’2\“’b - b2

PHYSICAL REVIEW A70, 052330(2004)

Muy=rog=— \2\b - bz,

(5

and for the generalizedNOT gate we letS, denote theS
matrix and we write

t11=1t10= too= tygg = tgu = tuu= 2

-(1-b)

to1=tqu= J
01~ ‘du \2

fou=Trg1=Db,
rg=ry=-Dh,

[y 2
Frgo=ru= v2Vb-Db s

rlu = rOd = \'Z\b - b2,

(6)

whereb is a real parameter which determines the amount of
reflection at the gate. We also write 8matrix for the areas

in the network where threeNOT gates can be consolidated
into one gate(VNoT)3, which we denote simply a&,)*

too=tio=t11 = tga = tug = tw= —7=-
V2

~(1-b)

tor=tgu= =
01~ ‘du V2

Mu=rg= b,
log="ru1=—Dh,

[y 2
Fg1=rw= v2Vb-Db s

fTou=r1w=— \2\b - bz.

()

Whenb=0, the gate in Eq(5) reduces to a pure Hadamard
gate with no reflection, and the gate in Ef) reduces to a
pure YNOT gate to within an overall phase. Both gates are
parametrized so that dsis varied from 0 to 1(total trans-
mission to total reflectionthe S matrix it remains unitary.
The S matrix acts on a state containing information about
the state of the qugit on both sides of the gate. In construct-
ing the adder network dynamics, we need to first construct
the transfer matrix for each gate. The transfer matrix con-
nects the probability amplitude on the left side of the gate to
the probability amplitude on the right side of the gate. For
example, for quqitA, it connects the column matrix
(a;,39,8,,89)T on the left to the column matrix
(e1,€9,€,,69)". The transfer matrix can be constructed from
the S matrix. We first define two “swapping” matricasand
v defined as
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) our analysis to the case where the entanglement gate func-
tions without reflection, but we will include the additional
0.8 possibility that the electrons can be traveling toward the in-
- put side of the network. Thus, we will work with an en-
5 06 tanglement gate that multiplies both of the stdfiesl) and
= ! . .
5 04 the |u,u) by a phase of=y-1. The matrix representing the
' entanglement gaté,; (wherel ,J=A,B,C andl #J) is diag-
02 onal, differing from the 1& 16 identity matrix only in the
places indicated above where the matrix elements take the
0 value ofi=y-1.
0 0.1 0.2 03 0.4 0.5

b
IV. THE QUQIT ADDER

FIG. 7. The fidelity of the Hadamard gate as the reflection pa- ) )
rameter is increased. Calculations for the single Hadamard gate and The sequence of gate operations used to add two quaqits
the entire network are carried outle:0.5. Due to the similarity in ~ together is identical to that of the qubit adder. The gate op-
parametrization, the fidelity profile of &NOT gate is identical. erations themselves must be generalized to act on the four-
state quqits. The network consists of quoits B, and C.
QuqitA is added to qugiB and qugitC is used as a carry bit.

1000 0000 The quqit adder is an entangled network. A general input or
\ = 0100 —]—)\= 0000 ) output state will be some superposition of the 64 orthogonal
loooo] Y *loo1o0 basis statesli,j,k) (where i,j,k=1,0,,d) that can be

0 00 0001 formed from the states of the three qugitsB, C (in that

orden. At any horizontal position along the adder, the state
of the network can be written in the form

|\I,> = ¢11]J1!111> + d’ll&l!lv(} + ¢llu|1111u> + ¢lld|1il!d>
+ $10101,0,D + -+ + pyq/d,d,u) + Pyedd.d,d). (1D)

fThe input statgon the lefy of the network iswh=1,1,0.
In the limit of a perfect Hadamard or a perfestoT gate, the
output(on the righj is [¥")=|1,0, .

We study the effects of reflection at the Hadamard gates
on the adder computation by constructing a matrix which
describes the entire adder quantum network. This matrix acts
on an input statgon the lefy of the network and gives an
output statgon the righj. The input state and output states
are written in the direct product basis of the three quigiee
Eqg.(11)] and have 64 elements. The transfer matrices for the
Entire adder guantum network, acting on individual quqjits,
are generalized to the 6464 matrices,

We can now express the transfer maffixn terms of theS
matrix and the swapping matrices,

T=(y+N-9 -\ +y- 971 9

Given an input of unit probability in statd) of a given
quait, a perfect Hadamard gate will produce an output o
|po)=(1/12)(|0)—|1)). We can compare the output of a per-
fect Hadamard gatégg), with the outpui¢) of an imperfect
Hadamard gate witlh # 0, by computing the fidelity of the
gate,

F = (ol )I°. (10

The fidelity of the gate decreaseskascreasegsee Fig. 7.
Due to the similar structure of theNOT gate, its fidelity
profile is identical to that of the Hadamard gate as the erro
parameteb is increased.

The perfect entanglement gate adds a phasketofthe
|1, 1) state in the two-qubit direct product space. In case of T,=T,® Ig® ¢, Tg=1o@ Tg® I, Tc=1,® lg® Te.
two qugqitsthere is also the possibility that the electrons will (12)
travel through the coupling region towards the input side.
The direct product space of two qugits has 16 orthogonal There are three distinct entanglement gates between the
states. Two of these 16 statgk, 1) and|u,u)) correspond to  different qugits. Each transfer matrix representing an en-
the case of two electrons traveling through the entanglemenanglement gate is diagonal, differing from the>684 iden-
gate at the same time and in the same direction. We will limitity matrix only where the two quqits acted upon both have

b=0 b=0.01 b=0.1

1 o I®

PR N FIG. 8. The eigenvalues df
- o ' are plotted on the unit circle. At
b=0 the eigenvalues are highly
. degenerate. A® is increased the
eigenvalues spread throughout the
] - 05 1 unit circle rapidly. The unitary
os . matrix corresponding&an adder
- . ' network with the VNOT gate
similar  eigenvalue

0.5 0.5

Im(z)

05 1 -1

-0.5

e .

‘ - et shows a
spreading.
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the value ofi1) or |u). For example, the entanglement trans- ~ With Hadamard gates defined on all three qugits and three
fer matrix acting on qugité& andC, V¢, is diagonal with a entanglement gates defined between the pairs of qugits we
value of i in the entries|1,0,1(1,0,1, |1,1,1(1,1,1, now write the matrix corresponding to the action of the en-

11,u,1X1,u,1], 11,d,1)¢1,d,1], u,1,uXu,1,ul, tire computation on an input state
|u,0,u)u,0,ul, lu,d,u)u,d,ul, and|u,u,u)(u,u,u|, and 1's
elsewhere.
|
Thw=Te (Vap)? Te-Tc-Vac T (Vap)? Te: (Vgd)* Tg- (Vap)® Tg - Vi Te. (13

ngd represents the transfer matrix for the entire network. It acts on any general inpubst#te lefy written in a three-quqit
combined basis and gives the output si@te the righj in that basis. The reflection parameteis kept the same for all the
Hadamard gates in the network.

The adder for theNOT gate network is given by

T=(Te)® (Vap)? - Te - (T0)® Vac: (Te)? - (Vap)? - Te- (Vgd)® - (Te)* - (Vap)? Tg - Ve Te, (14)

where(T;)% is the transfer matrix for a single gate which hasThe matrix is diagonal with entries of 1 where there are

the same effect as tienoT)® gate. TheT,;)® gate was given entries in the input state we would like to keep and entries of

its own parametrization in Eq7). 0 where there are entries in the input state we would like to
swap(see the Appendix We then construct a second swap-
ping matrix | —A=I". A unitary matrix can now be con-

A. The unitary matrix structed from the swapping matrices,andI’, and T ,4q
In a computation using an actual semiconductor-based )
electron waveguide, one must work with the input and output U=s(T+A Tagd - (A+T-Tagd ™ (15

states. However, the input and output states are unwield¥ ) ) o ) )
objects.T .44 being a transfer matrix, is not unitary and does ! NiS unitary matrix is very useful for studying the dynamics

not preserve the norm of the states upon which it acts. Any! the network and computing optimal states of the network
acceptable solution must conserve probability in the indi-2S the reflection parametbris varied.
vidual qugits and it is difficult to impose this restriction us- ~ On€ way to look at the interconnectedness of the quantum

ing input states and output states. However, starting fronff€WOrk is to study the behavior of the eigenvalues of the
T a4 it is possible to find a unitary matrix which explicitly duantum network. In Fig. 8 we show their behavior as we
conserves electron probability. increase the reflection parameterWe find that the eigen-

In a manner similar to changing from timatrix to the values ofU show a rapid spreading throughout the unit circle
transfer matrix for a single Hadamard gate we swap entrie§19- 8)- This eigenvalue spreading indicates that the direc-

from input and output states. The entries which we swap arlional properties of the quantum network are breaking down.
found from the individual probability conservation equations | N€ Unitary matrices corresponding to adder networks with

Egs. (1), (2), and(3). A column matrix representing an un- the VNOT gate shows similar eigenvalue spreading.
entangled input state on the left side of the netwduk),

will contain amplitudes consisting of multiples of the indi- .

vidual probability amplitudes;, bj, ¢,. A column matrix rep-

resenting an unentangled output state on the right side of the 0.8 Hadamard
network, | "), will contain amplitudes consisting of mul- - £ S NOT
tiples of the individual probability amplitudes, f;, g. Rear- 33 0.6

ranging Eqs(1), (2), and(3) and multiplying them together S

gives a single probability conservation equatifsee EQq. & 04

(Al) in the Appendi% consisting of multiples of coefficients 02

which are found in the input and output states. We can use | = Io.-__

Eq. (Al) to identify states that will have the same norm. 0 03 ---- (;:1 o

(This method is also valid when the input and output states
are entangled, the situation encountered in the quqit adder
network when reflection is presentVe first take the input FIG. 9. A plot of the output probability of the correct answer
state and decide according to the probability conservatiostate|1, 0, 1 changing with reflection parametéx Solid lines
equation which entries to keep and which to swap with theepresent the Hadamard adder and dashed lines represeitafie
output state. We then construct aX664 swapping matrixA. adder.
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There should be no electron probability incoming from the
output side of the network. The perfect input state for our
network is unit current incoming in the input stafe 1, 0.
Once the primary and resultant states are found, we employ
the swapping matrices to recover the input and output states.
All calculations are performed for values o&b=0.5. For

—— Hadamard

o
)

Probability
=)
o

04 b>0.5 the calculations become unstable.
02 We find that when there is no reflection present both quqit
adder networks give the same result as the corresponding
0 qubit adder network. However, when reflection is present it
0 0.1 02 03 04 05 is not possible to find simultaneously an output state with no

b incoming probability and an input state with incoming prob-

FIG. 10. A plot of the input probability of the perfect input state ability in only the|1,1,0 state. We choose to relax our input
|1, 1, O changing with reflection parametbr Solid lines represent and output states in such a way as to find solutions which
the Hadamard adder and dashed lines represeniNba@ adder. maintain the condition of no incoming probability from the

output side of the network but allow a small change to the

incoming probability on the input side. In Fig. 9, we show

) . the probability of finding the correct output state as a func-
The states of the system on whithacts we calbrimary  {jon of b, In Fig. 10, we show the probability of having the

states. The states which result from the actiorobn the  the correct input as a functidn

primary states we cafesultantstates. Due to the unitarity of e probability of finding the correct output of the qugit

U, the primary state and the resultant state for a networkaqger decreases rapidly withand depends on the type of

with a given reflection parameter will have the same norm.  aqger. For an adder constructed with Hadamard gates the

To find stationary state solutions of the network which allowprobability of finding the correct output is less thérwhen

the adder to function most efficiently, we first must find the < 5 020 In the case of an adder built USingoT gates, the

e!genvectors 0f. We ex'pand a primary statg n terms .Of the probability of finding the correct output is less thérwhen
eigenvectors ob, |¢;), with unknown expansion coefficients b>0.023

B. Stationary states of the network

i The ratio of outgoing electron probability in two states of
[Wacd = @1 1) + @zl o) + -+ + gy Pea)- (16)  asingle quqit is found by
U acting upon the expanded primary state gives the resultant leol?  (Woud(J0)OD W
state written as an expansion in eigenvectors where for each @ T W (D)o (19
ou ou

eigenstatéd,) the expansion coefficient is the expansion co-
efficient of the primary state multiplied by the eigenvakie Once all of the ratios of the probabilities outgoing in states of
associated with that eigenvector, a single a qugit are known the total outgoing probability is
normalized to unity and the individual probabilities are
[Vied = area o) + azealhy) + - + atsacedl boa)- (17) found. The same p);ocedure is performedpfor the incoming
We find a set of equations for the expansion coefficientprobabilities of single quqits. There are no rotation gates on
which are solved for a given set of required input and outpufjugit A in either adder network, and as a result there is no
states. reflection in qugitA. We discuss only the results for qudit
The boundary conditions that we impose on the systenand qugitC as qugitA maintains perfect input and output.
involve setting the incoming probability into the network. We find a rapid decrease in the amount of probability leaving

Output States [0> & [1> Input States [2> & 3> Input States [0> & [1>
1 1 3 P~
® O® e
= 0.8 Hadamard 0.8 et 0.8
| NoT o) o
< 06 0.6 0.6 =h
£ S
£ 04 0.4 0.4 o4
(U
obizecsssesyiry ., oo nmtmed

0.5 0 0.1 0.2 0.3 0.4 0.5
1
o®
g 0.8
z 06 il e
8
£ 04t /7 LT Tt
0.2
0
0.5 0 0.1 0.2 03 04 05
b b

FIG. 11. A plot of the probability entering and leaving the individual qu@itand C. Solid lines represent the Hadamard adder and
dashed lines represent thROT adder.
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the system in the correct states as the reflection pararmeterswer when the reflection parametes 0.023 corresponding
is increasedFig. 11). The change in incoming probabilities to a single gate of fidelitf- =0.954.
is somewhat slower and less defined. The input boundary
conditions on qugi€ are relaxed most as quditis the carry ACKNOWLEDGMENTS
qugit and often under the most algorithmic control.
The authors thank the Robert A. Welch FoundatiGmnant
V. CONCLUSIONS No. F-1052 and the Engineering Research Program of the
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It is possible to implement a simple adder network with Energy(Grant No. DE-FG03-94ER144§%or support of this

electron waveguides. The fidelity of the calculation decreasegork. L.E.R. thanks the U.S. Office of Naval Research
rapidly as the reflection is increased. Within the limits of theGrant No. N00014-03-1-063%or partial support of this
calculation an adder network constructed with Hadamargyork.
gates allows a probability greater thémf finding the cor-
rect answer when the a reflection paraméter0.020. This
corresponds to finding a single Hadamard gate of fidélity
=0.960. An adder network constructed withoT gates al- Equations(1)—«3) are multiplied together and rearranged
lows a probability greater thaé of finding the correct an- to find a total probability conservation equation:

APPENDIX

|aghscyf? + [agbicol® + [erf19.)* + |esfigel® + [agboCa|® + [asbocol® + [e1fodul® + lesfodd® + [esfugsl® + [eyfugol® + [asbucy|?

+ |agbyCol® + [e1fagil® + [erfagol® + [asbyc | + |aibaCal® + [aghicy|” + [aghiCol + |€of 19u/* + |of 194l + [aghocy|?

+ [agboCol? + leofoGul® + [eofodal® + [€ofudl® + leofugol” + [aobyCul? + [agbyCal® + l€ofagal” + |eofaGol” + [agbacyl?

+ |agbuCql” + leuf101 + leufigol” + [abicyl® + [awbicdl® + [esfogal® + |eufodol® + [auboCul® + [ayboCyl® + [aybycl®

+ [agbuCol” + leufugul® + leufudal® + laybacil® + laybacol” + [eufugul® + leufagal” + leaf10l” + |e4f1Gol” + [agbicyl?

+ |agbicol® + legfods| + [eafogol” + [agbocul® + |aghoCal” + [adbucal” + [aghycol” + legfugul® + leafugal” + [agbaci|®

+ |agbaCol® + leafagul® + lefagd®

= lesf100” + lexfigol” + [agbicy|® + [asbicyl® + [esfogal® + |esfogol® + [aiboCul® + [asboCel® + [azbycs|® + [azbycol®

+ leufugul® + lerfugd® + [aybgcal” + [asbacol” + [@sfogul® + |exfugal® + [eof101” + [eofgol + |aghbicy| + |aghscyl?

+ leofog1l® + [eofogol” + [aghocul? + [agbocal® + lagbuci|® + [aobucol” + [eofudul® + leofugd® + laghaCil® + [aghaCol®

+ leof a9ul® + [eofagel® + laubrcil® + laybicol” + leuf1gul® + leyf1gal” + [auboCal? + lauboCol” + leyfogul? + [eyfogal?

+ leufugil® + leufugol® + laubucyl® + laybucal® + leufagil® + leyfagol” + laubgcul® + laubacd® + [aghicil® + [aghicol®

+ eaf10ul + |€af19ul® + [adboCs|? + [aaboCol” + lesfoGul® + [eafoddl® + eufudal® + [eafudol” + ladbuCul® + [agbuCql?

+ legfagl® + |eafaol” + [agbgc |” + [agbycd*. (A1)

We identify those amplitudes in each state that must be swapped and construct two swapping hasmceE. A is a
diagonal matrix with entries

diagA)
=(1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,
1,1,0,0,1,1,1,1,0,0,1,1,0,0 (A2)
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